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Abstract

Throughout the last couple of years multiple imputation (MI) has become a popular and

widely accepted method to address the missing data problem. However, currently existing

multiple imputation software has limitations regarding incomplete count data, especially

with regard to certain kinds of multilevel count data: We present a multiple imputation

solution for ordinary and overdispersed zero-inflated clustered count data based on a

two-level hurdle model using a Bayesian regression approach within a chained equations

multiple imputation framework (Raghunathan, Lepkowski, van Hoewyk, & Solenberger,

2001; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006; van Buuren &

Groothuis-Oudshoorn, 2011).

Keywords: missing data, multiple imputation, count data, multilevel data,

zero-inflation
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Multiple Imputation of Zero-Inflated and Overdispersed Multilevel Count Data

1 Introduction

In his textbook, Paul Allison states that the best solution to the missing data

problem is prevention (Allison, 2001). This is especially true for complex multilevel data

sets, where missing data may occur at di�erent levels and all kinds of variables may be

unobserved (cf. van Buuren, 2011): Missing data may occur in the outcome variable, in

level-1 predictors, level-2 predictors, or even higher levels and finally in the group identifier.

We will see, that missing data solutions for complex multilevel data sets are still in rather

early stages of development, and none of them can – at the moment – be deemed optimal.

Missingness at level 1, level 2, or the class variable is a field, where a lot of research

still has to be done. Missingness in level-1 predictors is typically dealt with by excluding

incomplete cases from the analysis. This is the default of most multilevel software solutions

– a wasteful practice, which may lead to biased regression coe�cients (van Buuren, 2011).

Schafer and Yucel (2002) presented a multiple imputation solution for this problem by

“moving” the incomplete variables to the other side of the equation and treating them as

outcome variables in a multivariate linear mixed e�ects model. Their R package pan is

available from http://cran.r-project.org/package=pan. Schafer’s and Yucel’s solution

has also been implemented into the R package mice (function mice.impute.2l.pan()),

which is available from http://cran.r-project.org/package=mice. The disadvantage of

these functions is that they currently only impute under the normal model, assume

homoscedasticity, and do not support data with other distributional assumptions like count

data.

Missing data in level-2 predictors are usually handled by excluding the whole group

from the analysis. This is again very wasteful and may lead to selection e�ects at level 2

and to biased estimates of group level e�ects (van Buuren, 2011). A practicable solution for

this problem has been proposed by Gelman and Hill (2007) and Yucel (2008), who use two

data sets, one containing level-1 information, one containing level-2 information, and who

http://cran.r-project.org/package=pan
http://cran.r-project.org/package=mice


MI OF ZERO-INFLATED MULTILEVEL COUNT DATA 4

impute those data sets separately and iteratively, switching between level 1 and level 2. In

mice, this approach can be applied by using mice.impute.2l.pan() for incomplete level-1

variables and using mice.impute.2lonly.norm() or mice.impute.2lonly.pmm() for

incomplete level-2 variables (for details, refer to the documentation of the respective mice

functions). Again, the problem is, that this solution is not yet available for count variables.

Studies that address the problem of imputing a missing group identifier (for example

when an employee forgets to fill in the department, in which he or she is working) are to

our best knowledge not yet available. An incomplete class variable may lead to the

exclusion of valuable information.

Only handling missing data in the outcome variable has been researched su�ciently

well and can be done for example by using direct maximum likelihood techniques like full

information maximum likelihood estimation (FIML) or restricted maximum likelihood

estimation (REML) (van Buuren, 2011). However, as we will see, there are some

limitations with regard to incomplete count data models. FIML approaches try to use all

available information in the data to predict missing information (cf. Enders, 2010; Muthén

& Muthén, 2012). REML is a closely related alternative to FIML that is less sensitive to

small-sample bias (cf. van Buuren, 2011). The quality of parameter estimates of maximum

likelihood approaches depends to a great extent upon the correct specification of the

model. Variables that predict missingness should be included into the model. However,

using so-called auxiliary variables in the sense of Collins, Schafer, and Kam (2001) is still

problematic in currently available FIML software. Auxiliary variables are variables that are

of no interest to the data analyst and that therefore would not be included into the

analysis model, but that are highly correlated with the incomplete variables and their

missing data indicators and thus help to improve imputation quality. Mplus only supports

very basic auxiliary variable models. Count models with auxiliary variables are currently

not supported (Muthén & Muthén, 2012). Furthermore, Mplus is a commercial package –

closed source – and it is typically not possible for the end users to implement add-ons like
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FIML count data models that allow for auxiliary variables themselves. Users have to wait

until the Mplus developers make such models available. Open source SEM packages like the

sem package by John Fox (available from http://cran.r-project.org/package=sem) or

lavaan (Rosseel, 2012) are in much earlier stages of development in comparison to Mplus

and would require a lot more work before they are ready to support auxiliary variable

count models. lavaan at the moment does not even support any kind of count model.

Including auxiliary variables into a multiple imputation model on the other hand is

very straightforward. Multiple imputation (MI) is a state-of-the-art technique that – like

FIML – can use all available information in the data set to predict missing information

(Schafer & Graham, 2002). However, most of the currently available MI approaches do not

support multilevel models and imputed values do not reflect the clustered structure of the

data. The available multilevel imputation solutions on the other hand support only basic

two-level models and currently do not support complex count models.

This paper proposes and evaluates a multiple imputation solution for ordinary and

overdispersed zero-inflated clustered count data using a Bayesian regression approach

within a chained equations multiple imputation framework (Raghunathan et al., 2001; van

Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn, 2011). In sequential regressions

MI, each incomplete variable is imputed separately and iteratively based on predictions

derived from a plausible regression model. Here, we use a two-level hurdle model to address

both zero-inflation and overdispersion. Our proposed solution is part of a comprehensive

MI package for incomplete count data called countimp (Kleinke & Reinecke, 2013a), which

may be obtained from www.uni-bielefeld.de/soz/kds/software.html. It also includes

functions to impute incomplete two-level Poisson or two-level negative binomial data.

This paper is structured as follows: We first introduce the count data models that

our proposed imputation solution uses. We then give a brief introduction to multiple

imputation and explain our imputation approach in detail (Section 2). Section 3 describes

the setup and the results of our Monte Carlo simulations. We evaluated the quality of the

http://cran.r-project.org/package=sem
www.uni-bielefeld.de/soz/kds/software.html


MI OF ZERO-INFLATED MULTILEVEL COUNT DATA 6

proposed MI solution for incomplete zero-inflated two-level count data and compared its

performance to currently available MI solutions that are used to impute two-level data of

any type like predictive mean matching (cf. van Buuren, 2011). We end with a discussion

of our findings, give advice for the practitioner, and outline fruitful avenues for future

research (Section 4).

2 Theoretical Background

2.1 Count data models

The classical Poisson model

P (y) = exp(≠µ)µy

y! , µ œ R>0, y = 0, 1, 2, . . . , (1)

which is often used to model count data, assumes that the variance VAR(µ) is equal to the

mean µ. When data are overdispersed, meaning that the variance is larger in comparison

to the mean, fitting a Negative Binomial (NB) model is usually the better alternative1.

There are di�erent ways to parametrize the NB model (Hilbe, 2011). In Fisher’s

notation (Fisher, 1941), the Negative Binomial model is written as

P (y) = (k + y ≠ 1)!
y!(k ≠ 1)!

py

(1 + p)k+y
, y = 0, 1, . . . ; p, k > 0, (2)

where y is a non-negative integer number, and P (y) the probability of observing the

respective count y in the given sample. k and p œ [0, 1] are shape and scale parameters in

that distribution. The mean of (2) is µ = pk, the variance is µ + µ2

k .

A further problem apart from overdispersion that often arises in practise is

zero-inflation, meaning that empirical count data exhibit more zero counts than would be

predicted by either the Poisson or the NB model. One way to address an excess number of

zeros is to fit a hurdle model (Mullahy, 1986). Hurdle models are mixture models and

contain two model components: (a) a model for the probability of having a zero vs.
1
A comprehensive list of factors that “cause” overdispersion and a discussion of various possible solutions

is given byHilbe (2011).
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non-zero count, and (b) for the non-zero cases, a model that determines, what non-zero

count the observational unit has. Typically, the zero model is a binomial generalized linear

model (GLM), and the count model is either a zero-truncated Poisson model

P (y) = 1 ≠ fi0e≠µµy

(1 ≠ e≠µ)y! , y = 1, 2, . . . , (3)

or a zero-truncated NB model

P (y) = wk

1 ≠ wk

(k + y ≠ 1)!
(k ≠ 1)!y! ÷y, y = 1, 2, . . . , (4)

with w = 1
1+p and ÷ = 1 ≠ w. Note, that (4) is derived from (2) by dividing (2) by

(1 ≠ P (0)), with P (0) = 1
(1+p)k (Sampford, 1955).

Note also, that the zero and the count models can have di�erent predictors, as the

process that determines whether or not the observational unit has a non-zero count might

be quite di�erent from the process that determines what non-zero count the observational

unit has.

2.2 Mixed e�ects modeling

A basic assumption of the above mentioned models is that observations are

independent from one another. When data are clustered (e.g. when students are nested in

classes) this assumption is usually violated: Units within the same cluster typically share

certain properties, e.g. students going to schools in certain areas might di�er quite

noticeably from students from other areas. Statistical models need to represent these

cluster-specific properties. Using mixed e�ects models is a feasible approach to address

this. The term “mixed e�ects” means that the model consists of fixed variables, whose

values are not supposed to change across clusters, and random variables, which may di�er

between groups (like for example delinquency rates or levels of job satisfaction).
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Generalized linear mixed e�ects models (GLMM) can be written in the form

yij = —0j + —1jx1ij + · · · + eij

—0j = “00 + “01z1j + · · · + u0j

—1j = “10 + “11z1j + · · · + u1j

. . . ,

(5)

where yij represents the dependent variable, the observation of participant i in group j. —

are the regression coe�cients and eij denotes the individual level error term. x1ij is an

individual level predictor, z1j a group level predictor. Unlike “standard” regression models,

which treat regression coe�cients — as constant across clusters or groups, generalized linear

mixed e�ects models estimate “random” parameters separately for each group and provide

an estimate of the variation of intercepts and slopes across groups. It is possible to include

predictors for di�erences in intercepts and slopes across clusters (cf. Bryk & Raudenbush,

1992). “ are the group-level regression coe�cients and u the corresponding residuals. (5)

can be collapsed into a single equation. With one individual and one group level predictor,

for example, (5) can be written as

yij = “00 + “01z1j + u0j + (“10 + “11z1j + u1j)x1ij + eij

yij = “00 + “01z1j + u0j + “10xij + “11z1jx1ij + u1jx1ij + eij

yij = “00 + “01z1j + “10xij + “11z1jx1ij¸ ˚˙ ˝
“fixed” part

+ u0j + u1jx1ij¸ ˚˙ ˝
“random” part

+eij.

(6)

With more predictors, (6) can become confusingly large and is more easily written in

matrix notation:

yj = Xj— + Zjuj + ej, (7)

with yj being a nj ◊ 1 vector, the dependent variable with nj representing the number of

observations in the jth group. Xj is a design matrix with nj rows and p colums (including a

column of 1s referring to the intercept term). Xj contains the fixed e�ects predictors. Zj is

a design matrix with nj rows and q colums (including a column of 1s referring to the
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intercept term), which contains the random e�ects regressors. — is a p ◊ 1 vector

containing all parameters of the “fixed” part of the model, uj is a q ◊ 1 vector of random

e�ects and ej is a nj ◊ 1 vector of individual level errors.

Our proposed missing data procedure for two-level zero-inflated and overdispersed

count data imputes missing data on the basis of a two-level hurdle model. The zero model

is a binomial generalized linear mixed e�ects model. The count model is a zero-truncated

two-level NB model. Before we elaborate on that procedure, we give a brief introduction to

multiple imputation in general and introduce the chained equations MI approach.

2.3 Missing data and multiple imputation

Rubin (1976, 1987) coined the terms missing completely at random (MCAR), missing

at random (MAR) and not missing at random (NMAR) to refer to the randomness or

non-randomness of missing data processes. MCAR means that missingness depends only

on random factors and cannot be predicted by any other variable, whereas under MAR,

missingness is allowed to depend on observed information in the data set.

NMAR processes are typically “feared” by practitioners, as they are very hard to

handle and a lot of untestable assumptions have to be made, which involves a lot of

“guessing”. Under NMAR, missingness depends at least to some extent on unobserved

information.

The current state-of-the-art procedures were designed to work under MCAR and

MAR mechanisms. The NMAR problem is beyond the scope of this paper. A good and

practical solution however is to do a NMAR sensitivity analysis to get a rough idea how

and to what extent di�erent NMAR processes can a�ect parameter estimates (van Buuren

& Groothuis-Oudshoorn, 2011) and to discuss these e�ects thoroughly.

The reason why FIML and MI work under MAR is that they can use all available

information in the data set to try and predict missing information. Simple imputation

solutions like unconditional mean imputation cannot achieve this and produce biased
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results under MAR (Little & Rubin, 1987; Schafer & Graham, 2002).

While some more sophisticated single imputation solutions like expectation

maximization based approaches for example can also incorporate the information in Yobs –

the observed part of the data set Y – about Ymis – the missing part – and consequently

produce unbiased parameter estimates under MAR, they typically underestimate standard

errors, unless some kind of correction procedure is applied (Graham, Cumsille, &

Elek-Fisk, 2003; Schafer & Graham, 2002). The currently most feasible approach to fix this

problem is to create multiple imputations following Rubin’s theory (Rubin, 1987). By

replacing each missing value m times with a di�erent, but equally plausible value, the

researcher ends up with m data sets that di�er only in the missing part. These m data sets

are then analyzed separately (e.g. in our case, the two-level hurdle model is fitted to each

of these m data sets) and m statistical results are obtained. These are integrated into a

single overall result using Rubin’s rules for MI inference (Rubin, 1987). These rules

produce a combined parameter estimate (the mean of the m parameter estimates), as well

as a combined standard error, a t-ratio to test the null hypothis that the respective

parameter is zero, as well as a (usually 95%) confidence interval. The advantage over using

single imputation is that the combined standard error consists of a within imputation

component and a between imputation part. This combination incorporates the additional

estimation uncertainty due to missing data and typically increases standard errors and

broadens confidence intervals in an adequate way to reflect this estimation uncertainty.

Thus, if done properly, using MI yields widely unbiased parameter estimates and

measures of uncertainty in a wide range of scenarios. As violated assumptions of the

imputation model (e.g. violations of the MAR assumption) a�ect only the imputed part of

the data set, MI can be assumed to be quite robust to model misspecifications – depending

on the percentage of missing data, of course. The risk of introducing significant bias due to

model misspecifications and violated assumptions increases with an increasing amount of

values to be imputed (cf. Schafer & Graham, 2002).
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There are two established and widely used MI aproaches: joint modeling (Schafer,

1997a, 1997b) and conditional modeling, which is also known under the name mice –

multiple imputation by chained equations or sequential regressions multiple imputation

(Raghunathan et al., 2001; van Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn,

2011). The former approach requires the specification of a joint model for all the variables

in the data set, whereas the latter one tackles the missing data problem on a variable to

variable basis and imputes each incomplete variable separately based on a certain

statistical model – typically some kind of regression model with a specified set of

predictors. The advantage of using conditional modeling over joint modeling is that the

former approach is much more flexible when it comes to imputing data sets with variables

of di�erent types such as continuous, categorical, or semi-continuous, censored or truncated

variables. Software that uses the conditional modeling MI framework is for example

IVEware (imputation and variance estimation software) (Raghunathan, Solenberger, &

Van Hoewyk, 2002) or mice, (van Buuren & Groothuis-Oudshoorn, 2011), which we use as

basis for our proposed MI solution.

2.4 Multiple imputation of multilevel zero-inflated and overdispersed data

Our proposed multiple imputation procedure follows the conditional modeling

approach and works as an add-on function to the popular and powerful R package mice

(van Buuren & Groothuis-Oudshoorn, 2011). The m imputations are generated by the

mice() function, which automatically calls our functions. This has to be set up via the

method argument, as explained in the mice user’s manual (van Buuren &

Groothuis-Oudshoorn, 2011). The imputation model for each incomplete variable is

specified via the predictorMatrix argument of the mice() function. For a general

introduction to mice, see van Buuren and Groothuis-Oudshoorn (2011). For a detailed

example regarding how to use the proposed imputation method, see Kleinke and Reinecke

(2013a).
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We now describe the functions to multiply impute incomplete zero-inflated (and

overdispersed) clustered or panel count data in detail. The functions are part of the

countimp R package (Kleinke & Reinecke, 2013a), and are also available from

https://github.com/kkleinke:

mice.impute.2l.zihnb(y,ry,x,type,intercept.c=TRUE,intercept.z=TRUE)

mice.impute.2l.zihnb.noint.zero(y,ry,x,type,intercept.c=TRUE,intercept.z=FALSE)

mice.impute.2l.zihnb.noint.count(y,ry,x,type,intercept.c=FALSE,intercept.z=TRUE)

mice.impute.2l.zihnb.noint.both(y,ry,x,type,intercept.c=FALSE,intercept.z=FALSE)

The name “2l.zihnb” stands for “multiple imputation of two-level (2l) zero-inflated

count data based on a hurdle negative binomial model”.

The “.noint” variants treat the intercept only as a fixed, but not as a random e�ect.

It may be specified, if the intercept is treated only as a fixed e�ect in the zero model

(“.noint.zero”), the count model (“.noint.count”), or both models (“.noint.both”).

Note that the noint models do estimate an intercept term, but treat the intercept only as

a fixed e�ect in the respective model. A better label would probably have been

no.random.int, but we continued to use the name noint for consistency with other mice

functions.

All functions fit a binomial GLMM with a logit link as the zero model. This model

determines if the respective observational unit has a zero or non-zero value. The count

model on the other hand is a zero-truncated mixed e�ects NB model, determining, what

kind of non-zero value the observational unit has. It is possible to specify di�erent sets of

predictors for the zero and the count model. This is done via the predictorMatrix, as

explained below.

The functions receive the following input from the main mice() function. y is a

numeric vector with incomplete data in long format – the variable to be imputed. Please

note that mice() does not automatically transform the variable into long format (meaning

https://github.com/kkleinke
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that the data of the di�erent groups are stacked upon each other). If the data are in wide

(i.e. multivariate) format, the user has to bring them into long format for example by using

the reshape() function from R package stats, before calling our functions. ry is the

response indicator of y, with ry=TRUE indicating that the respective value in y has been

observed. x is a matrix of complete covariates (also in long format), containing the

variables that will be used to predict missing information in y. The information stored in

type (a vector of length equal to the number of columns in x) determines the imputation

model. type is extracted from the respective row of the predictorMatrix slot of the

mice() call: Allowed entries in the predictorMatrix are {≠2, 0, 1, 2, 3, 4, 5, 6}: Codes

{≠2, 0, 1, 2} are used in the same way as in other two-level mice imputation functions (e.g.

mice.impute.2l.norm()). ‘-2’ identifies the class variable (please note that the current

version allows only one class variable). ‘0’ means that the variable will not be included in

the imputation model and thus not be part of x. ‘1’ denotes a variable that will be

included as a fixed e�ect in both the zero and the count model. ‘2’ means that the variable

will be included as a fixed and random e�ect both in the zero and count model. ‘3’

indicates a variable to be included only as a fixed e�ect and only in the count model. ‘4’

means the variable will be included as a fixed and random e�ect, but only in the count

model. ‘5’ stands for variables that will be included as a fixed e�ect only in the zero model.

Finally, ‘6’ denotes a variable to be included as a fixed and random e�ect in the zero model

only. An example regarding how to set up the predictorMatrix properly is given in

Kleinke and Reinecke (2013a). The functions furthermore use the following arguments:

intercept.c can be either TRUE or FALSE. TRUE means, that the model will include the

intercept as a random e�ect in the count model, FALSE means that the model will not use

the intercept as a random e�ect. intercept.z works analogously for the zero model.

Between imputation variability is introduced by Bayesian regression (cf. Rubin, 1987,

pp. 169–170):

1. The zero model is fitted to the data – a two-level binomial generalized linear mixed
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e�ects model using the glmmPQL function from package MASS, and we compute ◊̂z, the

posterior mean, and VAR(◊̂z), the posterior variance of model parameters ◊z.

2. We draw new parameters ◊ú
z from N(◊̂z, VAR(◊̂z)).

3. Predicted probabilities for having a zero vs. non-zero count are computed, using ◊ú
z .

4. We draw imputations from a Binomial distribution and “remember” cases, who are

supposed to get a non-zero count later on.

5. The count model is fitted – a zero-truncated two-level NB model using the glmmadmb

function from package glmmADMB and the truncnbinom family.

6. We get ◊̂c„ the posterior mean, and VAR(◊̂c),the posterior variance of model

parameters ◊z.

7. We draw ◊ú
c from N(◊̂c, VAR(◊̂c)).

8. Predicted counts are computed using ◊ú
c .

9. We finally draw non-zero imputations (see step 4) from a zero-truncated NB

distribution.

All functions return a numeric vector with imputations of length equal to the number

of unobserved data points in y to the main mice() function.

3 Monte Carlo simulations

3.1 Overview of the simulations and hypotheses

To test the quality of the proposed imputation solution, we ran two Monte Carlo

simulations. In the first one, we simulated two-level data sets with MAR missingness in the

zero-inflated count variable. Missingness depended on an observed continuous individual

level predictor. Missing data were imputed using our proposed procedure, and also by some
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other procedures: two-level Poisson imputation (POI), two-level NB imputation (NB), and

predictive mean matching (pmm).

Predictive mean matching Little (1988); Rubin (1986) has been recommended for

imputation of variables of any kind, including discrete and semi-continuous data (van

Buuren, 2013, May; Vink, Frank, Pannekoek, & van Buuren, 2013). The function fits a

linear regression model and selects one observed value from a pool of values, whose fitted

value is closest to the value predicted by the regression model. By imputing an actual

observed value, pmm can bu�er some of the e�ects regarding the misspecified regression

model (here the underlying normality assumption). The question is, where this robustness

ends. We wanted to test, if the recommedation that pmm may be used for variables of any

kind can also be extended to the rather complex data structure of two-level zero-inflated

and overdispersed count data. Following research by van Buuren (2011), we tested two

pmm strategies: the first one simply applied the pmm algorithm as it is implemented in

mice (labeled PMM subsequently). The second strategy included a cluster dummy among

the predictors (labeled PMMG) – thus estimating an intercept term per group. This

strategy is supposed to work for random intercept models, but is usually not able to cater

for random slopes. We did not have any specific hypotheses regarding the pmm approach

and our research interest was rather exploratory. However, as our data generation model

also included a random slope, we did not expect the second pmm strategy to work very

well.

Two-level Poisson imputation and two-level negative binomial imputation are

strategies o�ered by the countimp package (Kleinke & Reinecke, 2013a). Based on findings

by Kleinke and Reinecke (2013b), who demonstrated that the count data imputation model

has to fit the data well to be able to obtain unbiased statistical estimates, we hypothesized

that both strategies would produce suboptimal results, when the multilevel data are

zero-inflated and overdispersed: Two-level NB imputation would not be able to estimate

the correct percentage of zero counts. Additionally, two-level Poisson imputation would
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also underestimate the true level of dispersion in the data.

We supposed that only an imputation procedure that is specially tailored to the

problem at hand will be able to produce unbiased estimates.

In the second simulation, we again simulated missingness in the dependend count

variable. Our model included a continuous individual level predictor and a continuous

group level predictor, which was the “cause” of missingness here. The second simulation

only tested the proposed two-level approach for zero-inflated and overdispersed count data.

The purpose of this simulation was to demonstrate that the proposed procedure is able to

yield unbiased parameter estimates and reasonable measures of uncertainty in the given

scenario.

3.2 Quality criteria

To evaluate the quality of the respective missing data methods, we relied on

quantities that are well established in the missing data literature (Demirtas, 2009;

Demirtas & Hedeker, 2008; Schafer & Graham, 2002): the average parameter estimate

across the replications, its standard deviation, bias, coverage rate, and the average

confidence interval width. Let Q be the population parameter of interest and ‚Q the

average estimate of Q across the replicated samples, based on the respective sample and

the applied missing-data procedure. Its standard deviation is SD‚Q. Bias in parameter

estimation is defined as BIAS = Q ≠ ‚Q and measures estimation accuracy. Relative bias is

defined as BIAS
Q ú 100% (cf. Muthén & Muthén, 2012). An accurate missing data procedure

produces near-zero bias. Furthermore, a good missing data procedure yields consistently

accurate estimates across the replicated samples, thus SD‚Q is supposed to be small and

shall be similar to the “true” population standard error. An estimate of this standard error

can be obtained by computing SD‚Q based on the complete data before the introduction of

missing data (not to be confused with complete case analysis). Demirtas and Hedeker

(2008) and Demirtas (2009) use the term estimation precision to refer to the adequate size
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of standard errors and consequently the widths of the respective confidence intervals.

Coverage rate (CR) is a hybrid measure that reflects both bias of parameter estimates and

bias of standard errors. CR is defined as the percentage of 95% confidence intervals that

cover the true parameter, and shall obviously be close to 95%. Schafer and Graham (2002)

define CR < 90% as undercoverage. Undercoverage may be caused by low accuracy, which

means that the confidence interval is too far to the left or to the right to cover the true

parameter, by too narrow intervals, or by a combination of both factors.

In summary, a good missing data procedure manages to produce narrow intervals in

combination with near-zero bias and high coverage.

3.3 Simulation 1

We generated two-level count that were zero-inflated and overdispersed. We ran 200

replications. Each data set consisted of g = 50 groups with sample size nj = 100,

j = 1, . . . , g, which we simulated separately and which were then stacked upon each other

to obtain two-level data sets in “long format”. The total sample size was

N = �g
j=1nj = 5000. To introduce an excess number of zero counts, we needed to specify

two models, one model determining if the observational unit had a zero or non-zero count

(the zero model), and the count model, which determined what non-zero count the

observational unit had. The zero model was a binomial GLMM, the count model was a

zero-truncated NB model. In the first simulation, we used a model with only one individual

level predictor x1.

3.3.1 Data generation. The data generation process for each group j worked in

the following way: Firstly, we simulated x1j ≥ N (0, 1), u0zj ≥ N (0, .5), u1zj ≥ N (0, .3),

u0cj ≥ N (0, .5), and u1cj ≥ N (0, .3), where u... denote the random e�ects, with subscripts z

and c referring to the zero model and count model respectively, and 0 and 1 referring to the

intercept term and slope respectively. We then obtained the parameters for the zero model
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by using

—zj = “z + uzj,

where

—zj =

S

WWU
—0zj

—1zj

T

XXV , “z =

S

WWU
“00z

“10z

T

XXV =

S

WWU
0

0.5

T

XXV , and uzj =

S

WWU
u0zj

u1zj

T

XXV .

The following process determined, if yij had a zero or non-zero value:

yij =

Y
__]

__[

0 if rij ≥ U(0, 1) < invlogit(Xj—zj)

> 0 if rij ≥ U(0, 1) >= invlogit(Xj—zj)
.

Xj is a design matrix containing a column of 1s referring to the intercept term and

predictor x1j. Non-zero entries in yij, labeled y>0ij were drawn from a zero-truncated NB

distribution with size ◊ = 2, and means µj = exp(X>0j—cj), where

—cj = “c + ucj,

with

—cj =

S

WWU
—0cj

—1cj

T

XXV , “c =

S

WWU
“00c

“10c

T

XXV =

S

WWU
1

0.75

T

XXV , and ucj =

S

WWU
u0cj

u1cj

T

XXV .

X>0j refers to the subset of Xj with corresponding non-zero yij values.

Repeating the process g times and stacking the data upon each other, we ended up

with a data set in long format, containing the following variables: y the zero-inflated count

variable, x1 the individual level predictor, and the group identifier grp.

Missing data were finally introduced according to the following rule:

yij =

Y
__]

__[

NA if rij ≥ U(0, 1) < invlogit(≠1 + x1ij)

yij if rij ≥ U(0, 1) >= invlogit(≠1 + x1ij)
,

where NA indicates a missing value. This generated an average of 30.3% of missing data

across the 200 replications. Missingness in y was MAR in the sense of Rubin (Rubin, 1987)

and depended on x1.
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3.3.2 Missing data imputation. Missing data were imputed with the R

package mice (van Buuren & Groothuis-Oudshoorn, 2011), using the following imputation

functions: (a) mice.impute.2l.zihnb(), our proposed procedure specially taillored to

zero-inflated and overdispersed count data, (b) mice.impute.2l.poisson(), two-level

Poisson imputation, (c) mice.impute.2l.nb2(), two-level negative binomial imputation,

based on a NB2 model (Hilbe, 2011) and (d) mice.impute.pmm(), classical “flat file”

predictive mean matching. Here, we tested two variants – the first one by using the pmm

function as it is, and the second one by additionally including a cluster dummy among the

predictors. mice.impute.pmm already comes with the standard mice installation. The

other functions are available from the countimp package and are described in detail in the

countimp user’s manual (Kleinke & Reinecke, 2013a). The imputation models of all

two-level imputation functions estimated the intercept as well as the slope of x1 as random

factors. The two-level hurdle model imputation function estimated random intercepts and

slopes for the zero and the count model. The first pmm strategy (labeled PMM) ignored

the multilevel structure of the data set and imputed missing data in the incomplete count

variable y in long format on the basis of the linear regression model yi = —0 + —1x1i + Ái.

The second pmm strategy additionally included the group identifier as a categorical

variable among the predictors.

3.3.3 Data analysis. The data sets were then analyzed by a two-level hurdle NB

model. The zero model was a binomial GLMM, with x1 as a fixed and random factor. The

model was estimated using the function glmmPQL() from R package MASS (Venables &

Ripley, 2002). The count model – a zero-truncated two-level NB model – also included x1

among the fixed and random e�ects. The model was estimated by the glmmadmb() function

from package glmmADMB using the truncnbinom family.

3.3.4 Results. We first compared, how well each missing data procedure was able

to preserve the distribution of the original data. We compared estimates of the mean,

standard deviation and the percentages of the respective counts from 0 to 10. Results are
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displayed in Table 1.

As can be seen in that table, two-level hurdle NB imputation (HNB) and PMM

seemed to be able to preserve the original distribution of the incomplete count variable

quite well, especially the percentage of zero counts had been estimated well. The pmm

strategy with the cluster dummy (PMMG) on the other hand seemed to slightly

underestimate the percentage of zeros, as did the Poisson and the negative binomial

approches: Poisson imputation underestimated the percentage of zero counts by 11.7%.

The ones on the other hand were overestimated by 4.5%. The standard deviation was on

average 1.46 points lower in comparison to the complete data. Also, NB imputation

underestimated the standard deviation by 1.09. The percentage of zero counts was 3.7%

lower in comparison to the original data and ones were overestimated by 2.5%. Based on

these findings, we might already expect that regression coe�cients of the pmm cluster

dummy variant, two-level Poisson imputation and NB2 imputation will not be very

accurate.

Results regarding the model coe�cients may be found in Tables 2 and 3. Table 2

gives a comparison of the complete data estimates and the two-level hurdle NB results. As

can be seen in that table, bias was rather small in most cases. The highest absolute bias

was -.08 (i.e. 4% of the original parameter) for the overdispersion parameter ◊ of the count

model. The highest relative bias was 13.3% (i.e. an absolute bias of .04) for the random

slope in the zero model. Coverage rates were well above the 90% threshold. The average

confidence interval widths were slightly higher in comparison to the complete data

estimates. Note again, that MI adds a little bit of extra conservativeness to the standard

error estimates by combining within and between imputation variation to reflect the

uncertainty in parameter estimates due to missing data. Note also that the multilevel

functions in R typically do not estimate standard errors of the random e�ects (for reasons,

see for example: Jul 15, 2006 posting by D Bates to the R-help mailing list;

https://stat.ethz.ch/pipermail/r-help/2006-July/109308.html). We therefore did

https://stat.ethz.ch/pipermail/r-help/2006-July/109308.html
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not compute confidence intervals and coverage rates for the random parts of the models.

All in all, results of the proposed hurdle NB approach can be regarded as su�ciently good.

Results of the other aproaches are presented in Table 3. We can see that two-level Poisson

imputation produced fixed e�ects estimates that went far astray. Biases were huge, e�ects

of the count model were severely underestimated, and parameter estimates of the zero

model even went in the wrong direction. Coverage was close to zero. Two-level NB

imputation also produced highly unsatisfactory results. Coverage was far from the

acceptable 90% threshold. All fixed e�ects were underestimated quite noticeably. Even the

overdispersion parameter was not estimated correctly. We now turn to the two pmm

approaches. The ordinary pmm solution produced rather small relative biases in the fixed

e�ects estimates of between 0% and 8%, with corresponding coverage rates of between

79.9% and 93.47%. This is actually not too bad, however on the other hand also not

su�ciently good. Biases in the random e�ects estimates were all larger in comparison to

our proposed hurdle NB procedure and pmm also did not estimate the overdispersion

parameter correctly. The pmm cluster dummy variant produced noticeably worse results

than the other pmm solution. It is a practicable solution for random intercept models, but

obviously cannot cater for random slopes. Note again that both pmm approaches imputed

an actual observed value on the basis of a standard linear regression model assuming

homoscedasticity and normal errors. By imputing an observed value, pmm can bu�er

violated model assumptions to some extent. However, this simulation showed, where the

limits of this robustness lie. Neither of the currently existing approaches could produce

results that were as good as those obtained by our proposed procedure.

3.4 Simulation 2

The second simulation worked in the same way as Simulation 1, with the following

exceptions: Here, we used two predictors, an individual level predictor x1 and a group level

predictor, labeled z1. Again, for each group j,we simulated the following quantities:
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x1j ≥ N (0, 1), z1j ≥ N (0, 1), u0zj ≥ N (0, .5), u1zj ≥ N (0, .3), u0cj ≥ N (0, .5), and

u1cj ≥ N (0, .3).

We then obtained the parameters for the zero model by using

—zj = �zzj + uzj,

where

—zj =

S

WWU
—0zj

—1zj

T

XXV , �z =

S

WWU
“00z “01z

“10z “11z

T

XXV =

S

WWU
0 0

0.5 0

T

XXV , zj =

S

WWU
1

z1j

T

XXV , and uzj =

S

WWU
u0zj

u1zj

T

XXV .

The following process determined, if yij had a zero or non-zero value:

yij =

Y
__]

__[

0 if rij ≥ U(0, 1) < invlogit(Xj—zj)

> 0 if rij ≥ U(0, 1) >= invlogit(Xj—zj)

Non-zero entries in yij, labeled y>0ij were drawn from a zero-truncated NB

distribution with size ◊ = 1, and means µj = exp(X>0j—cj), where

—cj = �czj + ucj,

with

—cj =

S

WWU
—0cj

—1cj

T

XXV , �c =

S

WWU
“00c “01c

“10c “11c

T

XXV =

S

WWU
1 0.5

0.75 0

T

XXV , zj =

S

WWU
1

z1j

T

XXV , and ucj =

S

WWU
u0cj

u1cj

T

XXV .

X>0j refers to the subset of Xj with corresponding non-zero yij values.

Again, by repeating the process g times and stacking the data upon each other, we

got a data set in long format, containing the following variables: y the zero-inflated count

variable, x1 the individual level predictor, z1, the group level predictor, and the group

identifier grp.

Missing data were finally introduced according to the following rule:

yij =

Y
__]

__[

NA if rij ≥ U(0, 1) < invlogit(≠1 + z1j)

yij if rij ≥ U(0, 1) >= invlogit(≠1 + z1j)
,

where NA indicates a missing value. This generated an average of 30.1% of missing data

across the 200 replications. In this simulation, missingness depended on group level

variable z1.
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3.4.1 Results. Results are presented in Table 4. Bias in parameter estimation

was negligibly small. The highest relative bias was 3% (corresponding to an absolute bias

of .01) for ‡11c. Confidence interval widths were comparable to the complete data results,

coverage was acceptably large, indicating that both parameter and corresponding standard

error estimates were reasonable.

4 Discussion

We have proposed a multiple imputation procedure for incomplete two-level count

data that are zero-inflated or zero-inflated and additionally overdispersed. The procedure

is based on the multiple imputation by chained equations approach and works as an add-on

to the mice software in R (van Buuren & Groothuis-Oudshoorn, 2011). It imputes missing

data on the basis of a two-level hurdle negative binomial model. Hurdle models are

mixture models and consist of a zero model (a binomial GLMM) and a count model (a

zero-truncated NB model). The zero model determines, if the observational unit has a zero

vs. non-zero value. The count model determines, what non-zero value the observational

unit has.

We presented two Monte Carlo simulations in which we evaluated the quality of the

proposed approach. In the first simulation we compared the performance of our procedure

to other currently available solutions for two-level count data: two-level Poisson

imputation, two-level NB imputation and flat file predictive mean matching. Here we

compared a simple predictive mean matching approach and a pmm variant that included a

cluster dummy among the predictors. This strategy was supposed to yield better estimates

of random intercepts (van Buuren, 2011). We found that only the two-level hurdle NB

approach yielded acceptable results. Poisson imputation severely underestimated the

percentage of zero counts, NB imputation also underestimated the zero counts. With about

30% of the values in y to be filled in, we see that neither the Poisson model nor the NB

model are good imputation models in the sense that they are able to preserve both the
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structure of the data and the relationships within the data set. We further see that filling

in about one third of the data in y with inadequate information can actually do a lot of

damage.

The cluster dummy pmm variant produced inacceptable results, as well. This was in

accordance with our hypothesis that the cluster dummy variant is only an option for

random intercept models, but not for random slope models. The simple pmm variant did

astonishingly well. Though the underlying linear regression model was severely violated

(e.g. it ignored the hierarchical structure of the data and assumed a normal model), pmm

could bu�er these violations quite well by imputing an actual observed value. However,

results were still suboptimal and our solution that was specially tailored to the problem at

hand produced arguably better results.

Our results corroborate our earlier stated notion that for more complex problems

(where the robustness of currently available solutions like pmm fails), we need missing data

procedures that are specially tailored to the problem at hand.

The second simulation used a model that was a little bit more complex than the one

from Simulation 1 – with an individual level predictor and a group level predictor, which

was the “cause” of missingness. Again, the proposed procedure produced reasonable

estimates.

Limitations of the present study can be stated as follows: Using artificial data always

has advantages and disadvantages. On the one hand it is good to be able to control as

many parameters as possible in an artificial Monte Carlo simulation. It is then possible to

demonstrate that the procedures work in the scenarios they were designed for and that the

results are a consequence of the manipulations made in the study. On the other hand, real

life scenarios are often di�erent from scenarios used in Monte Carlo studies. Monte Carlo

simulations often test the limits of certain procedures and missing data mechanisms and

percentages are often less severe in empirical data. Assumed violations of the statistical

model are often not so extreme than the scenarios used in Monte Carlo simulations.
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Kleinke, Stemmler, Reinecke, and Lösel (2011) for example have shown that pmm worked

well for empirical two-level data that were approximately multivariate normal. We have

tried to be “realistic” in our simulations in a way that we used maximum missing data

percentages of about 30% that may be typically found in empirical longitudinal data (cf.

Lally, Mangione, & Honig, 1988; McCord, 1978). Future research should test pmm using

empirical multilevel count data to see if pmm can cope better in these scenarios.

A second disadvantage of using simulated data is that the distribution of empirical

data furthermore deviates at least to some extent from the convenient statistical models

used for data imputation and data analysis. Future research needs to look more deeply into

how well our procedure copes with varying degrees of model fit.

Future studies also need to address various kinds of model misspecifications:

Currently, our procedure assumes homoscedasticity – an assumption that is sometimes

problematic when analyzing empirical data. It will be a fruitful avenue for future software

development to allow for a heteroscedastic imputation model. Sometimes, empirical data

also violate other parametric assumptions of the imputation and analysis models. The

gamlss package in R (Stasinopoulos & Rigby, 2007) allows the estimation of

semiparametric models that might be used in these cases. de Jong, van Buuren, and Spiess

(2013) already have proposed an imputation procedure for continuous data based on that

idea, which may be generalized to two-level count models. Future research needs to

establish practical guidelines, which procedures work best in certain given scenarios, i.e.

when to use parametric approaches, and when to use non- or semiparametric approaches.

Finally, two hierarchical levels are sometimes not su�cient (e.g. students nested in

classes nested in schools). It will be a necessary avenue for future program development to

support more than two levels.
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Computational details

The results in this paper were obtained using R 3.0.0 with packages aster 0.8-23,

countimp 1.0, glmmADMB 0.7.4, MASS 7.3-26, and mice 2.17. R itself and the packages

aster, MASS and mice are available from http://CRAN.R-project.org/. The countimp

package is available from www.uni-bielefeld.de/soz/kds/software.html. glmmADMB is

available from http://glmmadmb.r-forge.r-project.org.

http://CRAN.R-project.org/
www.uni-bielefeld.de/soz/kds/software.html
http://glmmadmb.r-forge.r-project.org
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Table 1

Simulation 1 – descriptive statistics

COM HNB PMM PMMG POI NB

M 2.13 2.09 2.13 2.09 2.11 2.04

SD 5.46 5.13 5.29 4.72 4.00 4.37

%0 50.16 50.23 50.20 47.49 38.40 46.46

%1 15.98 15.93 15.98 17.37 20.51 18.46

%2 9.85 9.88 9.88 10.61 13.90 10.85

%3 6.41 6.41 6.39 6.79 8.92 6.83

%4 4.27 4.30 4.28 4.50 5.57 4.50

%5 3.01 3.00 2.96 3.10 3.56 3.07

%6 2.13 2.16 2.15 2.23 2.35 2.18

%7 1.59 1.58 1.57 1.62 1.60 1.59

%8 1.21 1.21 1.21 1.23 1.14 1.19

%9 0.90 0.90 0.89 0.90 0.81 0.89

%10 0.71 0.71 0.70 0.70 0.60 0.69

Note. The table displays, how well di�erent MI procedures were able to preserve the dis-

tribution of the original variable. COM are the simulated complete data, HNB is two-level

imputation for zero-inflated and overdispersed count data, based on a hurdle NB model,

PMM is predictive mean matching, PMMG denotes the predictive mean matching variant

with an additional dummy indicating group membership, POI is two-level Poisson impu-

tation and NB is two-level imputation based on a NB2 model. M is the mean, SD the

standard deviation, and %0–%10 the observed relative frequency of the respective count

(averaged across the 200 replications and – if applicable – the m = 5 imputations).
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Table 2

Simulation 1 – two-level hurdle NB imputation results (HNB)

Sim. Complete Data MI Estimates

Q ‚Q SD‚Q CR WID ‚Q SD‚Q BIAS CR WID

—0z 0.00 0.01 0.06 100.00 0.25 0.01 0.07 -0.01 96.50 0.32

—1z 0.50 0.49 0.06 100.00 0.20 0.49 0.07 0.01 93.50 0.25

—0c 1.00 1.01 0.07 100.00 0.32 1.00 0.11 0.00 94.00 0.31

—1c 0.75 0.75 0.05 100.00 0.17 0.74 0.06 0.01 92.00 0.22

‡00z 0.50 0.49 0.06 0.48 0.06 0.02

‡11z 0.30 0.28 0.05 0.26 0.06 0.04

‡00c 0.50 0.49 0.06 0.49 0.06 0.01

‡11c 0.30 0.29 0.04 0.27 0.05 0.03

◊ 2.00 2.02 0.15 2.08 0.21 -0.08

Note. Subscrips c and z denote the count and zero model respectively. — are the fixed e�ects,

‡ the random e�ects standard deviations. Q is the simulated population parameter, ‚Q the

average parameter estimate across the 200 replications, SD‚Q its standard deviation. CR is

the 95% coverage rate. BIAS is the defined as Q≠ ‚Q. WID is the average confidence interval

width. The left part of the table displays the results based on the simulated complete data,

the right hand side the results of the multiply imputed incomplete data.



MI OF ZERO-INFLATED MULTILEVEL COUNT DATA 33

Table 3

Simulation 1 – results of various proxy imputation procedures

two-level Poisson imputation two-level NB2 imputation

‚Q SD‚Q BIAS CR WID ‚Q SD‚Q BIAS CR WID

—0z -0.49 0.07 0.49 0.00 0.30 -0.15 0.07 0.15 42.64 0.28

—1z -0.00 0.06 0.50 0.00 0.21 0.22 0.06 0.28 0.51 0.20

—0c 0.69 0.22 0.31 6.28 0.37 0.72 0.09 0.28 7.11 0.34

—1c 0.41 0.26 0.34 0.00 0.20 0.54 0.06 0.21 4.57 0.20

‡00z 0.45 0.05 0.05 0.41 0.05 0.09

‡11z 0.24 0.04 0.06 0.23 0.04 0.07

‡00c 0.48 0.06 0.02 0.48 0.06 0.02

‡11c 0.28 0.04 0.02 0.25 0.04 0.05

◊ 1.91 0.27 0.09 0.99 0.08 1.01

pmm pmm with cluster dummy

‚Q SD‚Q BIAS CR WID ‚Q SD‚Q BIAS CR WID

—0z 0.00 0.06 -0.00 93.47 0.25 -0.11 0.06 0.11 56.50 0.23

—1z 0.47 0.07 0.03 79.90 0.22 0.28 0.04 0.22 0.50 0.18

—0c 0.99 0.09 0.01 85.93 0.28 0.84 0.09 0.16 53.00 0.34

—1c 0.81 0.08 -0.06 83.92 0.29 0.60 0.07 0.15 21.50 0.19

‡00z 0.33 0.04 0.17 0.34 0.05 0.16

‡11z 0.20 0.03 0.10 0.19 0.03 0.11

‡00c 0.35 0.05 0.15 0.52 0.05 -0.02

‡11c 0.23 0.04 0.07 0.21 0.03 0.09

◊ 1.25 0.18 0.75 1.27 0.16 0.73

Note. Subscrips c and z denote the count and zero model respectively. — are the fixed e�ects, ‡

the random e�ects standard deviations. Q is the simulated population parameter, ‚Q the average

parameter estimate across the 200 replications, SD‚Q its standard deviation. CR is the 95% coverage

rate. BIAS is the defined as Q ≠ ‚Q. WID is the average confidence interval width.



MI OF ZERO-INFLATED MULTILEVEL COUNT DATA 34

Table 4

Simulation 2 – two-level hurdle NB imputation results

Sim. Complete Data MI Estimates

Q ‚Q SD‚Q CR WID ‚Q SD‚Q BIAS CR WID

—0z 0.00 -0.00 0.08 100.00 0.31 0.00 0.08 -0.00 92.50 0.31

—1z 0.50 0.49 0.05 100.00 0.20 0.49 0.05 0.00 93.00 0.19

—2z 0.00 -0.00 0.08 100.00 0.30 0.00 0.08 -0.00 95.00 0.32

—0c 1.00 1.00 0.07 100.00 0.31 0.99 0.07 0.00 96.00 0.30

—1c 0.75 0.75 0.05 100.00 0.16 0.74 0.06 0.00 91.50 0.19

—2c 0.50 0.49 0.08 100.00 0.32 0.48 0.08 0.01 95.00 0.31

‡00z 0.50 0.49 0.06 0.48 0.06 0.01

‡11z 0.30 0.29 0.04 0.28 0.04 0.01

‡00c 0.50 0.48 0.05 0.48 0.05 0.01

‡11c 0.30 0.29 0.04 0.29 0.04 0.01

◊ 1.00 1.00 0.05 1.01 0.07 -0.01

Note. Subscrips c and z stand for the count and zero model respectively. — are the fixed

e�ects (where —1. is the coe�cient of x1, and —2. is the coe�cient of z1), ‡ denote the

random e�ects standard deviations. Q is the simulated population parameter, ‚Q the average

parameter estimate across the 200 replications, SD‚Q its standard deviation. CR is the 95%

coverage rate. BIAS is the defined as Q ≠ ‚Q. WID is the average confidence interval width.

The left side of the table displays the results based on the simulated complete data, the right

hand side the results of the multiply imputed incomplete data.
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