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Abstract

Special data types like count data require special analysis and imputation techniques. Yet,
currently available multiple imputation tools are very limited with regard to count data. The
countimp package provides easy to use multiple imputation (MI) procedures for incomplete
count data based on either a Bayesian regression approach (Rubin, 1987) or on a bootstrap
regression approach within a chained equations MI framework (van Buuren, Brand, Groothuis-
Oudshoorn, & Rubin, 2006; van Buuren & Groothuis-Oudshoorn, 2011). Our software works
as an add-on for the popular and powerful mice package in R (van Buuren & Groothuis-
Oudshoorn, 2011). The current version of countimp supports ordinary count data imputation
under the Poisson model, imputation of incomplete overdispersed count data under either the
Quasi-Poisson or the Negative Binomial model, imputation of zero-inflated ordinary or overdis-
persed count data based on a zero-inflated Poisson or Negative Binomial model, and imputation
of multilevel count data based on a generalized linear mixed effects model (overdispersion and
zero-inflation are supported).
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1 Introduction and overview

Count data require special analysis techniques: Ordinary count data are typically analyzed using
some kind of Poisson model. Overdispersed count data, i.e., count data that have a larger vari-
ance in comparison to the mean are usually modeled by Quasi-Poisson or Negative Binomial (NB)
models. Zero-inflated count data, i.e., count data that exhibit an excess number of zero counts can
be analyzed by either zero-inflated Poisson or NB models, or by hurdle models (Zeileis, Kleiber,
& Jackman, 2008). Furthermore, generalized linear mixed effects Poisson or NB models can for
example be used to analyze multilevel count data.

Missing data methods and especially multiple imputation procedures for count data however are
very sparse. In practice, the missing data problem in count variables is typically handled by (a) ig-
noring that the data are counts and by proceeding as if they were continuous, (b) by treating the data
as categorical or ordinal variables and using imputation techniques for these data like polytomous
regression, or (c) by applying some normalizing transformation like a square-root transformation
and using imputation techniques for normal data (cf. Landerman, Land, & Pieper, 1997). We regard
these solutions as quick fixes (that may work in some settings), but not as an optimal and general
solution to adequately analyze incomplete count data and get precise and unbiased parameter esti-
mates as well as standard errors in a wide variety of scenarios. Erdman, Jackson, & Sinko (2008)
have demonstrated that analyzing count data with suboptimal models yields biased results. We
think that what is true for data analysis will also be true for data imputation. Imputation procedures
should therefore be tailored to the problem at hand (e.g. overdispersed, zero-inflated, or multilevel
count data). Unfortunately, existing MI solutions for count data support only rather basic models:

The R package mi for example offers multiple imputation routines for incomplete ordinary and
overdispersed count data using Bayesian Quasi-Poisson regression (Su, Gelman, Hill, & Yajima,
2009). Zero-inflation or multilevel count data are not supported by that package. IVEware, which
is available as a SAS add-on or standalone version offers count data support, but fits “only” an
ordinary Poisson model. ice for STATA 12 supports count data imputation under a Poisson or Neg-
ative Binomial regression model. However, zero-inflation and multilevel models are not supported.
Mplus version 7 offers full information maximum likelihood (FIML) estimation of incomplete
count data models, but multiple imputation routines in Mplus currently do not support count data.

This lack of general count data support was not very satisfactory and we wanted to create a
MI package that can handle all kinds of count data: ordinary, overdispersed, zero-inflated and
multilevel count data. Our aim was to build a package that is flexible and easy to use. The imputa-
tion procedures should be applicable under missing completely at random and missing at random
mechanisms (Rubin, 1976).

Our software uses the multiple imputation by chained equations (MICE) approach to create the
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imputations (van Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn, 2011) and works as an
add-on for the mice package in R (van Buuren & Groothuis-Oudshoorn, 2011). The underlying
statistical theory stems from Rubin (1987): Our multiple imputation algorithms for count data may
be seen as an extension or generalization of Rubin’s (1987) Bayesian logistic regression imputation
approach to other data types. As an alternative to Bayesian regression, which may not be the best
choice in some scenarios – as it assumes a normal distribution of parameters, we offer a bootstrap
version of each algorithm. The package is available from http://www.uni-bielefeld.de/soz/

kds/software/countimp 1.0.tar.gz.

The paper is structured as follows: We begin by introducing the general idea of multiple impu-
tation and the chained equations approach of multiple imputation. We then elaborate on different
count data models and describe our missing data algorithms for count data in detail. We demon-
strate, how our functions work together with mice and give some examples. We finally discuss
advantages and limitations of our solutions and outline fruitful avenues for future software devel-
opment.

2 Theoretical background

2.1 Multiple imputation in a nutshell

Throughout the last two decades, multiple imputation (Rubin, 1987; Schafer, 1997) has become
more and more popular and has become one of the standard procedures to handle missing data
(Schafer & Graham, 2002).

Multiple imputation procedures are generally preferable to single imputation, as single impu-
tation procedures typically have a problem to produce unbiased standard error erstimates (Schafer
& Graham, 2002). Multiple Imputation (MI) means that each missing value is filled in more than
once. The resulting m complete data sets are then analyzed separately and the m statistical results
are combined into an overall result using Rubin’s rules for MI inference (Rubin, 1987). These
rules take variation within and between the m completed data sets into account to compute an over-
all variance estimate. This additional variation is supposed to reflect estimation uncertainty due
to missing data in an adequate way. The combined point estimate of the parameter of interest is
simply the mean of the m parameter estimates, which typically produces a precise estimate of the
respective population parameter (Schafer & Graham, 2002).

Various multiple imputation tools for different data types have been proposed, e.g., norm for
multivariate normal data, cat for categorical data, mix for data sets containing both continuous and
categorical data, and pan for panel data (Schafer, 1997; Schafer & Yucel, 2002). Schafer’s MI
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approach – based on theoretical work by Rubin (1987) – is often referred to as the joint modeling
approach to multiple imputation (e.g. van Buuren & Groothuis-Oudshoorn, 2011), as his algorithms
assume a joint probability distribution of all the variables in the model. A different MI approach –
the MICE approach (multiple imputation by chained equations) – imputes missing data separately
and iteratively on a variable to variable basis, using a chain of regression models (Raghunathan,
Lepkowski, van Hoewyk, & Solenberger, 2001; van Buuren et al., 2006; van Buuren & Groothuis-
Oudshoorn, 2011). Advantages and disadvantages of the respective MI frameworks have been
reviewed in Kleinke, Stemmler, Reinecke, & Lösel (2011).

How exactly imputations are generated depends on the respective multiple imputation frame-
work: Whereas joint modeling makes it necessary to specify a joint probability distribution of all
the variables in the model and draws imputation from the predictive distribution of missing data
given the observed data under this joint model, the chained equation approach models each incom-
pletely observed variable separately. For each variable with missing data, a subset of variables in
the data set is defined to predict missing data in that variable using some kind of regression ap-
proach. Imputations are generated from P(Yj|Ys,q j), where Yj is the variable containing missing
data, Ys is the subset of variables that is used to model Yj and q j are the parameters to be estimated.
In detail, imputations are generated by an iterative procedure: First, the posterior distribution of
q is calculated given the observed data. Then new parameters q ⇤ are simulated from P(q |Yobs),
where Yobs denotes the observed part of the data in data set Y . Finally, imputations Y ⇤ are drawn
from P(Ymis|Yobs,q ⇤). Steps two and three are repeated m times to obtain the m imputations. From a
mathematical and computational standpoint, the only problem is to determine the respective distri-
butions to draw from. In mice this is done by iteratively sampling from the conditional distributions
using a Gibbs sampler (see van Buuren & Groothuis-Oudshoorn, 2011, for details). Both MI ap-
proaches assume that missing data are either missing completely at random (MCAR) or missing at
random (MAR) in the sense of Rubin (1976).

We use the chained equations MI framework as basis for our algorithms. We prefer this ap-
proach over joint modeling because it is more flexible with regard to “mixed” data sets: It is far
easier to impute data sets with variables of various data types like continuous, categorical, and
count variables, as one does not have to find a joint model, which in fact may not even exist.

2.2 The mice package in R

The mice package in R has a couple of advantages we want to point out and which make the
software a good basis for our algorithms: mice, like the R environment for statistical computing, is
completely open source and available free of charge to all practitioners from www.r-project.org.
As the source code is completely available, the computation process is transparent. Everybody can
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see, how the program works and what the program does to produce the results. Furthermore, mice
already comes with a great variety of imputation solutions and additionally allows to call user-
written imputation functions (such as ours). It is thus very flexible and easily extendable. Beyond
that, mice offers highly helpful tools to assess imputation convergence and quality. Features like
rounding, passive imputation and post processing are helpful to ensure that imputations are plausi-
ble and within an allowed range. For an overview of all of mice’s capabilities and how to use the
program, see van Buuren & Groothuis-Oudshoorn (2011). Here, we review only the most basic
essentials that are necessary to know in order to create multiple imputations with mice and our
add-on functions.

Multiple imputations are created by calling mice(). The function uses the following arguments:

mice(data, m = 5,

method = vector("character",length=ncol(data)),

predictorMatrix = (1 - diag(1, ncol(data))),

visitSequence = (1:ncol(data))[apply(is.na(data),2,any)],

post = vector("character", length = ncol(data)),

defaultMethod = c("pmm","logreg","polyreg"),

maxit = 5,

diagnostics = TRUE,

printFlag = TRUE,

seed = NA,

imputationMethod = NULL,

defaultImputationMethod = NULL

)

m sets the number of imputations (default is m = 5), maxit sets the maximum number of itera-
tions for the Gibbs sampler. The imputation procedure with which missing data in a certain variable
are imputed is specified via the method argument: A not exhaustive overview of imputation meth-
ods that are already implemented in MICE is given in Table 1. The procedures are all described in
detail in van Buuren & Groothuis-Oudshoorn (2011).

method must be a character vector of length equal to the number of variables in the data
set. The ith entry in method corresponds to the ith variable in the data set. Completely ob-
served variables have method "", indicating that they need not be imputed. The command imp

<- mice( data, method = c( "", "norm", "pmm", "logreg" ) ) would multiply impute
the data stored in the object data and store the results in an object called imp. The first variable
in that data set would not be imputed, the second one would be imputed using Bayesian linear
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Table 1: Overview of imputation procedures in mice

Name Description Scale
pmm predictive mean matching numeric
norm Bayesian linear regression numeric
2l.norm 2-level linear mixed effects model numeric
logreg Bayesian logistic regression factor (2 levels)
polyreg polytomous regression factor (> 2 levels)
sample random sample from observed data any

regression (norm), the third would be filled in by predictive mean matching (pmm), and the last one
by Bayesian logistic regression (logreg). The respective imputation functions are stored inter-
nally under the name mice.impute.name where name identifies the respective imputation func-
tion. Thus specifying "logreg" as imputation method for a variable internally calls the function
mice.impute.logreg(). This is important to know when programming self-written imputation
procedures. That these can be called by mice(), they have to be called mice.impute.name, where
the name part can be any combination of characters. One of our count data imputation functions
for example is called mice.impute.2l.nb2(). These function can be used for multiple imput-
ing overdispersed two-level count data on the basis of a Negative Binomial model by setting the
respective entry in the method vector to "2l.nb2".

Selecting the subsets of predictors for each incompletely observed variable is done via the
predictorMatrix argument. predictorMatrix must be a rectangular matrix of dimensions
equal to the number of variables in the data set. An example is shown in Table 2. Each row i
in that matrix denotes the imputation model of variable Vi. The zeros and ones indicate (0 = no; 1 =
yes), if the respective variable Vj is used to predict missing data in Vi. Using the information from
the predictorMatrix, mice automatically creates three objects that are passed on to the respec-
tive mice.impute.name sub-function: y, x and ry. y is an incomplete data vector of length n, the
dependent variable in the imputation regression model and x is an n⇥ p matrix of predictors, those
variables that were specified via the respective row in the predictorMatrix. ry is the response
indicator of vector y, indicating if a value in y has been observed (ry= TRUE), or not (ry= FALSE).

2.3 Count data modeling in a nutshell

Before we introduce the functions of the countimp package, we familiarize the reader with typical
count data models. A good introduction and summary may be found in Zeileis et al. (2008): The
standard procedure to analyze ordinary count data is to fit a Poisson model under the generalized
linear modeling (GLM) framework (Nelder & Wedderburn, 1972). GLMs describe the dependence
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Table 2: Specification of imputation models in mice: The predictorMatrix argument.

V1 V2 V3 V4 V5 V6 V7
V1 0 1 1 1 1 1 1
V2 1 0 1 1 1 0 1
V3 0 0 0 0 0 0 0
V4 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 0
V6 0 0 0 0 0 0 0
V7 0 0 0 0 0 0 0

Note. Each row i denotes the imputation model for incompletely observed variable Vi in the data
set. The zeros and ones indicate, if variable Vj, with j 2 1, . . .k, where k is the number of variables
in the data set, is part of the imputation model of Vi (1 = yes, 0 = no).

of a scalar variable yi on a set of regressors xi. The conditional distribution of yi|xi is a linear
exponential family with probability density

f (y;l ,d ) = exp
✓

yl �b(l )
d

+ c(y,d )
◆
, (1)

with l being the canonical parameter that depends on xi via a linear predictor, d being a dispersion
parameter, and b(·) and c(·) being functions that determine, which member of the family (e.g.,
Poisson) is used. The mean is determined by E[yi|xi] = µi = b0(li), the variance by VAR[yi|xi] =

fb00(li). The dependence of E[yi|xi] = µi on xi is specified via a link function g(·). The classical
poisson model

f (y; µ) = exp(�µ)µy

y!
(2)

with link function g(µ) = log(µ) assumes that the variance VAR(µ) is equal to the mean µ (thus
dispersion parameter d takes on the value 1).

A problem that often arises in real life is that the restriction of equidispersion of the classical
Poisson model is violated. Very often empirical data are overdispersed, which means that the
variance is larger in comparison to the mean. Analyzing overdispersed data using classical Poisson
regression leads to an underestimation of the variation in the data and an overestimation of statistical
significance (cf. Zeileis et al., 2008). The standard procedure for overdispersion is to fit either a
Quasi-Poisson model or a Negative Binomial model:

Quasi-Poisson regression is identical to Poisson regression except for the fact that it relaxes
the assumption of equidispersion of the Poisson model. Here, dispersion parameter d is estimated
from the data rather than being fixed to 1. A second solution that leads to virtually identical results
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is to fit a Negative Binomial (NB) model. There is a number of different NB models and a number
of different ways to parametrize a Negative Binomial model (cf Hilbe, 2007). What they have in
common is that they all estimate a shape parameter that gives information about (over-)dispersion.
Here it is labeled a:

f (y; µ,a) =
G(y+a)

G(a)y!
pa(1� p)y, (3)

with p = a
a+µ . Typically the log is used as link function and VAR(µ) = µ + µ2

a . Parameter d is
fixed to one, as a already addresses overdispersion (Venables & Ripley, 2002).

An excess of zero counts can be addressed by fitting a zero-inflated Poisson or Negative Bino-
mial model (Lambert, 1992) or by fitting a hurdle model (Mullahy, 1986). These models contain a
second model component that addresses the zero counts: Hurdle models combine a left truncated
count component and a right-censored hurdle component.

fh(y;x,z,b ,g) =

(
fz(0;z,g) if y = 0
(1� fz(0;z,g)) · fc(y;x,b )/(1� fc(0;x;b )) if y > 0.

(4)

The corresponding mean regression relationship is given by

log(µi) = xT
i b + log(1� fzero(0;zi,g))� log(1� fcount(0;xi;b )). (5)

Parameters b , g and a are estimated by maximum likelihood and the count and hurdle components
can be maximized separately, which also means that a different set of predictors could be used in
each of the two model components. The count model family can be Poisson or NB with a log link,
the zero hurdle model family is typical binomial with either a logit or probit link.

Zero-inflation models combine a point mass at zero I{0}(y) and the count component
fcount(y;x,b ). Unlike hurdle models they allow two possible sources of zeros. Zeros may arise
both in the count part and the zero part of the model. The probability of a zero count is inflated
with probability p = fzero(0;z,g), the unobserved probability p of belonging to point mass compo-
nent is modeled by a binomial GLM p = g�1(zT g). The zero-inflated density is

fzeroin f l(y;x,z,b ,g) = p · I{0}(y)+(1�p) · fcount(y;x,b ) (6)

Parameters b , g and a are estimated by ML and different sets of predictors could be used for the
count part and the zero part. Again, the count model can be either fit as a Poisson or NB model.

One typical way to analyze clustered or panel count data is to fit a generalized linear mixed
effects model using the Poisson or Quasi-Poisson family (Schall, 1991). Mixed effects models
estimate typical regression parameters like any other regression model, but additionally estimate
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variation and covariation of intercepts and slopes across clusters, groups or individuals.

2.4 Introducing between-imputation variability

The functions in the countimp package use the regression models described in the previous section
to multiply impute missing data. To introduce between-imputation variability, we either follow the
Bayesian regression approach, as it is described in Rubin (1987), or we fit the specified models
to different bootstrap samples for each of the m imputations. Note that multiple imputation infer-
ence using Rubin’s rules (Rubin, 1987) incorporates two variance components: the with-imputation
component and the between-imputation component. The combination of the two sources of varia-
tion is supposed to reflect the additional uncertainty in parameter estimation due to missing data in
an adequate way (see for example Schafer, 1997).

Bayesian regression The Bayesian regression principle stems from Rubin (1987), where he pro-
poses a bayesian logistic regression procedure: Here, he fits a logit model to the data and computes
q̂ and dVAR(q̂), the posterior mean and the posterior variance of q . q̂ is defined by

Pi2obs f (Yi|Xi, q̂)� Pi2obs f (Yi|Xi,q) 8 q , (7)

dVAR(q̂) is defined by the negative inverse of the second derivative matrix of the log-posterior
distribution at q = q̂

dVAR(q̂) =�


∂ 2

∂q∂q
logPi2obs f (Yi|Xi,q)

����
q=q̂

��1

. (8)

He then draws new parameters q ⇤ from N(q̂ , dVAR(q̂))1. In the third step, for each case with missing
data i 2 mis he calculates fitted values pi = logit�1(Xiq ⇤). These predicted values are not returned
directly, but an additional random component is used: He draws independent uniform (0,1) random
numbers ui, with i 2 mis. If ui is larger than the predicted value pi, he imputes Yi = 0, else Yi = 1.
These steps are repeated m times to obtain the m imputations.

The bootstrap variant Having to assume that parameters q ⇤ can be simulated from a normal
distribution N(q̂ , dVAR(q̂)) can sometimes be implausible. A good alternative in these cases is to
draw a new bootstrap sample Y ⇤ from the original data set Y m times and fit the respective regression

1It must be noted that the assumption that parameters q ⇤ can be simulated from a normal distribution N(q̂ , dVAR(q̂))
is being discussed quite critically (cf. Rubin, 1987). If the user does not want to make that assumption, we recommend
to use the bootstrap variant.
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model to Y ⇤ to obtain parameters q ⇤ respectively.

3 Multiple imputation of incomplete count data

We now describe the functions in the countimp package in detail and give some practical examples.

3.1 Multiple imputation of “ordinary” count data

The functions mice.impute.pois(y, ry, x) and mice.impute.pois.boot(y, ry, x) im-
pute univariate missing data using either Bayesian Poisson regression or a bootstrap Poisson regres-
sion model respectively. The arguments y, ry, and x need not be specified. They are automatically
obtained from mice(). The numeric vector y is the incomplete count variable that shall be multiply
imputed. The assumption is that y is Poisson distributed. ry is the response pattern of y, where ry
= TRUE indicates an observed value and ry = FALSE a missing value. x is the design matrix with
length(y) rows containing complete covariates – the imputation model, as it has been specified
via the predictorMatrix argument of mice(). The variables in x are used to predict missing
information in y.

The Bayesian method consists of the following steps:

1. Fit the Poisson model, and find bhat, the posterior mean, and V(bhat), the posterior variance
of model parameters b.

2. Draw new parameters b.star from N(bhat,V(bhat)).

3. Compute predicted scores p using exp(x[!ry, ] %*% b.star).

4. Draw imputations from rpois(n = length(p), lambda = p).

The bootstrap method draws a bootstrap sample from y[ry] and x[ry,] and consists of the
following steps:

1. Fit the Poisson model to the bootstrap sample and get model parameters b.

2. Compute predicted scores p using exp(x[!ry, ] %*% b).

3. Draw imputations from rpois(n = length(p), lambda = p).

Both functions rely on the standard glm.fit function from the stats package and return a numeric
vector of length sum(!ry) with imputations.
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3.1.1 Example

We now demonstrate how to use these functions to impute incomplete Poisson distributed count
data: First, we create a toy data set containing the dependent count variable y and three continuous
predictors, labeled x1 – x3. b0 – b3 are the corresponding regression coefficients, with b0 being
the intercept coefficient.

R> set.seed( 1234 )

R> b0 <- 1

R> b1 <- .75

R> b2 <- -.25

R> b3 <- .5

R> N <- 5000

R> x1 <- rnorm(N)

R> x2 <- rnorm(N)

R> x3 <- rnorm(N)

R> lam <- exp( b0 + b1 * x1 + b2 * x2 + b3 * x3 )

R> y <- rpois( N, lam )

R> POIS <- data.frame( y, x1, x2, x3 )

We then introduce MAR missingness in y using the following function:

R> generate.md <- function( data, pos = 1, Z = 2, pmis = .5,

+ strength = c( .5, .5 ) )

+ {

+ total <- round( pmis * nrow(data) )

+ sm <- which( data[,Z] < mean( data[,Z] ) )

+ gr <- which( data[,Z] > mean( data[,Z] ) )

+ sel.sm <- sample( sm, round( strength[1] * total ) )

+ sel.gr <- sample( gr, round( strength[2] * total ) )

+ sel <- c( sel.sm, sel.gr )

+ data[sel,pos] <- NA

+ return(data)

+ }

R> MPOIS <- generate.md( POIS, pmis = .2, strength = c( .2, .8) )

The argument pos of generate.md() determines, which variable(s) in data shall receive miss-
ing values. Z is “the cause of missingness”, pmis is the percentage of missing data that shall be
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created, and strength determines, if a MCAR or MAR mechanism (e.g. Rubin, 1987) shall be
created. strength takes two values between 0 and 1. They denote the percentages of incomplete
cases that have values either above or below the mean of Z. strength = c(.5, .5) would thus
simulate MCAR missingness – missingness not depending on Z, whereas strength = c(.2, .8)

for example would generate MAR missingness: 20% of the cases with missing values in pos will
be sampled from the cases who have a Z value smaller than mean(Z), and 80% of the cases with
missing values in pos will be sampled from the cases who have a Z value larger than mean(Z).

Now, we have our example data set and can impute missing values in y using mice() together
with mice.impute.pois(), do the repeated data analysis using the with() statement, and print a
summary of the combined results using the functions summary() and pool(). Further details about
using the with() and pool() functions may be found in van Buuren & Groothuis-Oudshoorn
(2011).

R> require( "mice" )

R> imp <- mice( MPOIS, method = c( "pois" ,"" ,"" ,"" ), print = FALSE,

+ seed = 1234)

R> res <- with( imp, glm( y ~ x1 + x2 + x3, family = "poisson" ) )

R> print( pool.res <- summary( pool( res ) ) )

est se t df Pr(>|t|) lo 95

(Intercept) 0.9782221 0.010485964 93.28871 135.74447 0 0.9574851

x1 0.7539451 0.008195521 91.99477 83.23373 0 0.7376452

x2 -0.2366734 0.009052450 -26.14468 28.85129 0 -0.2551919

x3 0.4886071 0.008062132 60.60520 68.28584 0 0.4725206

hi 95 nmis fmi lambda

(Intercept) 0.9989591 NA 0.1808110 0.1688297

x1 0.7702450 0 0.2350376 0.2168748

x2 -0.2181549 0 0.4101527 0.3706337

x3 0.5046936 0 0.2611679 0.2398408

Alternatively, we can use the bootstrap variant, which yields similar results:

R> require( "mice" )

R> impBS <- mice( MPOIS, method = c( "pois.boot" ,"" ,"" ,"" ), print = FALSE,

+ seed = 1234 )

R> resBS <- with( impBS, glm( y ~ x1 + x2 + x3, family = "poisson" ) )

R> print( pool.resBS <- summary( pool( resBS ) ) )
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est se t df Pr(>|t|) lo 95

(Intercept) 0.9820759 0.010298321 95.36272 190.77899 0 0.9617627

x1 0.7561635 0.007925848 95.40474 139.73054 0 0.7404934

x2 -0.2331646 0.009226357 -25.27158 25.20628 0 -0.2521588

x3 0.4878314 0.008131762 59.99086 60.03022 0 0.4715656

hi 95 nmis fmi lambda

(Intercept) 1.0023891 NA 0.1504005 0.1415403

x1 0.7718336 0 0.1780120 0.1663303

x2 -0.2141705 0 0.4394685 0.3966901

x3 0.5040971 0 0.2796465 0.2560400

3.2 Multiple imputation of overdispersed count data

The following functions may be used to impute incomplete overdispersed count data:

mice.impute.qpois(y, ry, x)

mice.impute.qpois.boot(y, ry, x)

mice.impute.nb(y, ry, x)

mice.impute.nb.boot(y, ry, x)

The functions impute univariate missing data based on either a Bayesian Quasi-Poisson ("qpois")
or Negative Binomial ("nb") model, or by a boostrap Quasi-Poisson or Negative Binomial model
(functions ending with “.boot”), and take the same arguments as the functions presented in Section
3.1. The imputation algorithms also work analogously, with the following differences: In the
first step of the algorithm, the Quasi-Poisson imputation functions use glm.fit() with family

= "quasipoisson" to fit the model, whereas the Negative Binomial imputation functions use
glm.nb() from package MASS. In the last step, imputations are drawn from a NB distribution.
The functions return a numeric vector of length sum(!ry) containing these imputations.

3.2.1 Example

We recycle some of the data from the example given in Section 3.1, namely x1–x3 and lam, create
an overdispersed count variable, and delete some of the data therein.

R> y.nb <- rnegbin( N, theta = 2, lam )

R> NB <- data.frame( y.nb, x1, x2, x3 )

R> MNB <- generate.md( NB, pmis = .2, strength = c( .2, .8) )
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The function generate.md() has already been defined and explained in Section 3.1. Our toy
data set containing the overdispersed count variable y.nb is now ready and we can impute missing
data in y.nb using for example either the Quasi-Poisson or the NB approach. We use the with()

statement to automate the repeated data analysis and combine the m results into an overall result
using the pool() function.

R> require("mice")

R> imp1 <- mice( MNB, method = c( "qpois" ,"" ,"" ,"" ), print = FALSE,

+ seed = 1234 )

R> imp2 <- mice( MNB, method= c( "nb","" ,"" ,"" ), print = FALSE,

+ seed = 1234 )

R> res1 <- with( imp1, glm.nb( y.nb ~ x1 + x2 + x3 ) )

R> res2 <- with( imp2, glm.nb( y.nb ~ x1 + x2 + x3 ) )

Quasipoisson imputation yields the following results:

> print(pool.res1 <- summary( pool( res1 ) ) )

est se t df Pr(>|t|) lo 95

(Intercept) 1.0144907 0.01510831 67.14785 210.73328 0 0.9847080

x1 0.7677251 0.01481959 51.80476 472.83022 0 0.7386047

x2 -0.2060671 0.01570442 -13.12160 58.04839 0 -0.2375023

x3 0.4702718 0.01461203 32.18388 194.84819 0 0.4414537

hi 95 nmis fmi lambda

(Intercept) 1.0442735 NA 0.1424728 0.13437278

x1 0.7968455 0 0.0909138 0.08707662

x2 -0.1746318 0 0.2846613 0.26043236

x3 0.4990898 0 0.1486846 0.13999094

The combined results of NB imputation are highly similar:

> print(pool.res2 <- summary( pool( res2 ) ) )

est se t df Pr(>|t|) lo 95

(Intercept) 1.0141803 0.01513732 66.99868 357.96326 0 0.9844111

x1 0.7617044 0.01543719 49.34215 268.09241 0 0.7313108

x2 -0.2207702 0.01656256 -13.32947 43.89631 0 -0.2541521

x3 0.4721762 0.01479296 31.91899 270.21781 0 0.4430521
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hi 95 nmis fmi lambda

(Intercept) 1.0439496 NA 0.1063839 0.1014050

x1 0.7920979 0 0.1248754 0.1183711

x2 -0.1873883 0 0.3298207 0.2999661

x3 0.5013003 0 0.1243338 0.1178766

Unfortunately, the pool command in mice does not include the dispersion parameter. Therefore,
we help ourselves using the following code:

R> EST1 <- EST2 <- SE1 <- SE2 <- vector( length = 5, "list" )

> for (i in 1:5) {

+ EST1[[i]] <- res1$analyses[[i]]$theta

+ SE1[[i]] <- res1$analyses[[i]]$SE.theta

+ EST2[[i]] <- res2$analyses[[i]]$theta

+ SE2[[i]] <- res2$analyses[[i]]$SE.theta

+ }

R> res.alpha <- rbind( miinference ( EST1, SE1 ), miinference( EST2, SE2 ) )

R> row.names( res.alpha ) <- c( "qpois", "nb" )

R> print( res.alpha )

est std.err t.value df p.value lower upper

qpois 2.030553 0.07907918 25.67747 218.0813 0 1.874696 2.186411

nb 1.877274 0.07927559 23.68035 37.77058 0 1.716757 2.037791

r fminf

qpois 0.1566468 0.1432531

nb 0.4824185 0.3585178

3.3 Multiple imputation of zero-inflated count data

The following functions have been designed to impute zero-inflated count data:

mice.impute.2l.zip(y, ry, x, type)

mice.impute.2l.zip.boot(y, ry, x, type)

mice.impute.2l.zinb(y, ry, x, type)

mice.impute.2l.zinb.boot(y, ry, x, type)

The functions impute univariate missing data using either a Bayesian regression ZIP (zero-
inflated Poisson) or ZINB (zero-inflated Negative Binomial) or a bootstrap ZIP or ZINB regression
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model. The arguments y, ry, and x have already been explained in Section 3.1. type is a vec-
tor of length ncol(x) specifying the imputation model. It is automatically extracted from the
predictorMatrix argument of mice() (see below for details). Note that despite the function
name .2l. these functions do not fit a two-level model. The argument .2l. simply enables
mice’s type argument that we need for the specification of more complex imputation models:
Zero-inflation models are mixture models and require the specification of two models, a zero model,
determining if the observational unit has a “certain zero” or not and a count model, determining,
what count – both zero and non-zero – the observational unit has. The zero model is typically a logit
model, the count model can be specified either as a Poisson or NB model. Note, that a different set
of covariates (predictors) may be used for the zero and the count models. As already mentioned,
the two models are specified via the predictorMatrix argument: allowed entries are ‘0’, which
means that the variable is not included in the imputation model and will thus be no part of x, ‘1’
signifies that the variable will be included in both the zero and the count model. A ‘2’ denotes a
count model only variable, and finally ‘3’ indicates a zero model only variable.

The Bayesian regression variants consist of the following steps:

1. Fit the ZIP or ZINB model, using the zeroinfl() function from package pscl and find bhat,
the posterior mean, and V(bhat), the posterior variance of model parameters b.

2. Draw new parameters b.star from N(bhat,V(bhat)).

3. Compute predicted probabilities for observing each count p

4. Draw imputations from observed counts with selection probabilities p

The bootstrap functions (function names ending with “.boot”) draw a bootstrap sample from
y[ry] and x[ry,] and consist of the following steps:

1. Fit the ZIP or ZINB model to the bootstrap sample using the zeroinfl() function from
package pscl and get model parameters b.

2. Compute predicted probabilities for observing each count p.

3. Draw imputations from observed counts with selection probabilities p.

All functions return a numeric vector of length sum(!ry) with imputations.
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3.3.1 Example

Again, we present an example demonstrating the application of these functions. First, we simulate
a data set with an incomplete zero-inflated count variable. We follow the procedure outlined in
Erdman et al. (2008). In our example, coefficients b0 – b2 refer to the count model variables, c0
and c1 to the zero-model varibles, where subscript ‘0’ stands for the intercept term. theta is the
dispersion parameter.

R> b0 <- 1

R> b1 <- .3

R> b2 <- .3

R> c0 <- 0

R> c1 <- 2

R> theta <- 1

R> require("pscl")

R> set.seed(1234)

R> N <- 10000

R> x1 <- rnorm(N)

R> x2 <- rnorm(N)

R> x3 <- rnorm(N)

R> mu <- exp( b0 + b1 * x1 + b2 * x2 )

R> yzinb <- rnegbin( N, mu, theta)

R> pzero <- plogis( c1 * x3 ) # zero-infl. prob. depends on x3

R> ## Introduce zero-inflation

R> uni <- runif(N)

R> yzinb[uni < pzero] <- 0

R> zinbdata<-data.frame(yzinb,x1,x2,x3)

We then introduce MAR missingness. The function generate.md has been defined in Section 3.1.

R> zinbmdata <- generate.md( zinbdata, pmis = .3, strength = c( .2, .8) )

Having simulated our example data set, we are ready to specify the imputation model and impute
the data. In the predictorMatrix, we set variables x1 and x2 as count model predictors and x3

as a zero-model predictor.

R> ini <- mice( zinbmdata, m = 5, maxit = 0)

R> pred <- ini$predictorMatrix
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R> pred[1,] <- c(0, 2, 2, 3)

R> meth<-ini$method

R> meth[1] <- "2l.zinb"

R> imp.zinb <- mice( zinbmdata, m = 5, maxit = 1, method = meth,

+ predictorMatrix = pred, seed = 1234, print = FALSE)

Like in the previous examples, the with statement is then used to automate the repeated data
analysis process. We fit the ZINB model using the zeroinfl function from package pscl, defining
x1 and x2 as the count model variables by writing them before the “|”, and x3 as the predictor in the
zero-model by writing x3 after the “|” in the model formula. The m sets of regression parameters
are finally combined into an overall result by the pool function from package mice:

R> res.zinb <- with( imp.zinb,

+ zeroinfl( yzinb ~ x1 + x2 | x3, dist = "negbin", link = "logit" ) )

R> summary( pool( res.zinb ) )

est se t df Pr(>|t|)

count_(Intercept) 0.97491260 0.02798674 34.834800 21.80435 0.000000e+00

count_x1 0.30530880 0.02377065 12.843939 18.47107 1.190474e-10

count_x2 0.30223258 0.01776991 17.008106 823.93486 0.000000e+00

zero_(Intercept) -0.07953993 0.05735227 -1.386866 1342.16767 1.657128e-01

zero_x3 2.20015035 0.08879445 24.778017 113.35246 0.000000e+00

lo 95 hi 95 nmis fmi lambda

count_(Intercept) 0.9168414 1.03298376 NA 0.47365493 0.42749312

count_x1 0.2554596 0.35515794 NA 0.51442698 0.46455061

count_x2 0.2673530 0.33711221 NA 0.06878512 0.06652745

zero_(Intercept) -0.1920498 0.03296991 NA 0.05199425 0.05058266

zero_x3 2.0242385 2.37606225 NA 0.20051971 0.18653697

All that remains to be done is to get a combined estimate of the dispersion parameter. We obtain
that using the following code:

R> EST <- SE <- vector( length = imp.zinb$m, "list" )

R> for ( i in 1:imp.zinb$m ){

+ EST[[i]] <- log( res.zinb$analyses[[i]]$theta )

+ SE[[i]] <- res.zinb$analyses[[i]]$SE.logtheta

+ }

> print( data.frame( miinference( EST, SE ) ) )
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est std.err t.value df p.value lower upper

1 0.04369223 0.05847026 0.7472556 42.56254 0.4590178 -0.07425935 0.1616438

r fminf

1 0.4420869 0.3369995

Note that zeroinfl() gives an estimate of theta, but an estimate of SE.logtheta, the corre-
sponding standard error on the log scale. We thus also need to use log(theta) for pooling.

3.4 Multiple imputation of incomplete “ordinary” two-level count data

The following functions can be used to multiply impute incomplete two-level Poisson data:

mice.impute.2l.poisson(y, ry, x, type, intercept = TRUE)

mice.impute.2l.poisson.noint(y, ry, x, type, intercept = FALSE)

mice.impute.2l.poisson.boot(y, ry, x, type, intercept = TRUE)

mice.impute.2l.poisson.noint.boot(y, ry, x, type, intercept = FALSE)

The functions impute missing data on the basis of a linear mixed effects Poisson model and
are available as Bayesian regression variants or bootstrap regression variants (function ending
with“.boot”). Functions with the term “.noint” do not include the intercept term as a random
effect. The other functions automatically include the intercept term among the random effects.

The functions use the following arguments:

• y, a numeric vector with incomplete data in long format, which means that the data of the
different groups or the repeated measurements are stacked upon each other.

• ry, the response pattern of y, with TRUE indicating that the respective value in y has been
observed, and FALSE indicating a missing value.

• x, the design matrix with length(y) rows containing complete covariates, also in long
format. x contains the variables in the imputation model, as it has been specified via the
predictorMatrix argument of mice().

• type is a vector of length ncol(x) specifying the imputation model and determining, which
variables will be included in x. type is automatically extracted from the predictorMatrix
argument of mice(). Allowed entries in the predictorMatrix are:

– 0 = variable is not included in the imputation model (and will thus not be included in
x).
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– 1 = variable will be included as a fixed effect.

– 2 = variable will be included both as a fixed and random effect.

– -2 = class variable. Please note that only one class variable is allowed.

• intercept determines, if the model will include the intercept as a random effect (intercept
= TRUE) or not (intercept = FALSE).

y, ry, x and type are automatically passed on to the functions by mice().

The imputation algorithm of the Bayesian regression variants works in the following way:

1. Fit the Poisson model using the glmmPQL() function from package MASS. This function fits
a generalized linear mixed model with multivariate normal random effects, using penalized
quasi-likelihood, as it is for example described in Schall (1991).

2. Find bhat, the posterior mean, and V(bhat), the posterior variance of model parameters b.

3. Draw b.star from N(bhat,V(bhat)).

4. Compute predicted counts p.

5. Draw imputations from Poisson distribution with mean p.

The bootstrap functions draw a bootstrap sample from y[ry] and x[ry,] and consist of the
following steps:

1. Fit the glmmPQL model to the bootstrap sample and get model parameters b.

2. Compute predicted counts p.

3. Draw imputations from Poisson distribution with mean p.

All functions return a numeric vector of length sum(!ry) with imputations. We now demon-
strate how to use these functions.

3.4.1 Example 1

We first load the example data set NB.data, which contains simulated two-level data.

R> data( "NB.data" )

R> head( NB.data )
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Y X0 X1 ID GRP Z0 Z1

1 NA 1 -0.5519079 1 1 1 -0.2380342

2 0 1 0.2026189 2 1 1 -0.2380342

3 NA 1 0.4324042 3 1 1 -0.2380342

4 2 1 0.1869166 4 1 1 -0.2380342

5 2 1 -0.9273682 5 1 1 -0.2380342

6 NA 1 -2.4500163 6 1 1 -0.2380342

Y is the incomplete count variable. Y is in fact overdispersed – but let us ignore that fact for a
moment. In Section 3.5, we will impute and analyze these data with the “appropriate” functions
for overdispersed two-level count data. X1 is a continuous individual level predictor, Z1 a contin-
uous group level predictor. ID is the participant identifier and GRP indicates group membership.
Missingness is MAR and depends on Z1. In fact, missingness has been introduced according to the
following rule:

R> pmis <- plogis( -1 + NB.data$Z1 ) ## missingness probability

R> unif <- runif( nrow( NB.data ) ) ## random uniform numbers

R> sel <- which( unif < pmis )

R> NB.data$Y[sel] <- NA

This created around 34% missing data in Y.

We then set up the imputation:

R> ini <- mice( NB.data, maxit = 0 )

R> pred <- ini$predictorMatrix

R> pred[1,] <-c ( 0, 0, 2, 0, -2, 0, 1 )

R> meth <- ini$method

R> meth[1] <- "2l.poisson"

Running mice() with maxit=0 sets up the method vector and predictorMatrix. We simple
have to change the entries to meet our needs. In this example, we use X1 as a fixed and random
effect, and Z1 as a fixed effect (group level predictor). The class variable is GRP. We then want to
impute missing data in Y using the mice.impute.2l.poisson() function. The imputations are
created by calling mice():

R> imp <- mice( NB.data, maxit = 1, method = meth, pred = pred,

+ seed = 1234, print = FALSE )
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We then do the automated repeated data analysis using the do.mira() function and obtain a sum-
mary of the results. We wrote the do.mira() function to automate repeated two-level linear mixed
effects modeling. The function uses the following arguments: imp is an object of class mids with
multiple imputations. DV is the dependent varible in the two-level regression model. fixedeff

define the fixed effects in typical R formula language (see helpfile of function glmmPQL() for de-
tails). randeff defines the random effects in typical R formula language, grp is the class variable.
The function automatically builds the required model formula for the random effects in the form
paste( "~", randeff, "|", grp, sep = "" ). id is the observational unit identifier, fam
defines the GLM family. Currently, we support fam = "poisson" and fam = "nbinom" for the
Poisson or Negative Binomial model respectively. do.mira() reads out a table of combined fixed
effects estimates, the pooled random effects standard deviations (simply the mean of the imp$m

estimates), and a table of the combined random effects correlation(s) (again, simply the mean of
the imp$m estimates) .

R> result<-do.mira( imp = imp, DV = "Y",

+ fixedeff = "X1+Z1", randeff = "X1",

+ grp = "GRP", id = "ID", fam = "poisson")

R> summary(result)

Pooled Fixed Effects Coefficients:

est std.err t.value df p.value

(Intercept) 0.9957 0.0752 13.2354 191.7 < 2e-16 ***

X1 0.7841 0.0384 20.4041 535.2 < 2e-16 ***

Z1 0.4508 0.0920 4.8988 85.4 4.5e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

lower upper r fminf

(Intercept) 0.8473191 1.1440901 0.16886269 0.15325777

X1 0.7085758 0.8595471 0.09463658 0.08984987

Z1 0.2678473 0.6337571 0.27621702 0.23416390

Pooled Random Effects SD(s):

(Intercept) X1 Residual

0.4669164 0.2530191 1.5646265

Pooled Random Effects Correlation(s):

(Intercept) X1
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(Intercept) 1.0000 -0.3642

X1 -0.3642 1.0000

3.4.2 Example 2

Now, let us assume, we only want to use a random intercept model for data imputation and data
analysis. The code changes thus:

R> ini <- mice( NB.data, maxit = 0 )

R> pred2 <- ini$predictorMatrix

R> pred2[1,] <-c ( 0, 0, 1, 0, -2, 0, 1 )

R> meth <- ini$method

R> meth[1] <- "2l.poisson"

R> imp2 <- mice( NB.data, maxit = 1, method = meth,

+ pred = pred2, seed = 1234, print = FALSE)

R> result2 <- do.mira( imp = imp, DV = "Y",

+ fixedeff = "X1+Z1", randeff = "1",

+ grp = "GRP", id = "ID", fam = "poisson")

R> summary(result2)

Pooled Fixed Effects Coefficients:

est std.err t.value df p.value

(Intercept) 1.0165 0.0726 13.9978 149.36 < 2e-16 ***

X1 0.8019 0.0151 53.2777 6.36 1.1e-09 ***

Z1 0.4548 0.0934 4.8687 89.04 4.8e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

lower upper r fminf

(Intercept) 0.8730346 1.1600276 0.1956686 0.1746263

X1 0.7655931 0.8382532 3.8312561 0.8372394

Z1 0.2692076 0.6404418 0.2689618 0.2290785

Pooled Random Effects SD(s):

(Intercept) Residual

0.4422699 1.7309927

Pooled Random Effects Correlation(s):

[1] 0
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Note that an intercept only model is estimated by specifying randeff = "1" when calling
do.mira().

3.4.3 Example 3

A random slope model without a random intercept could be fit thus:

R> ini <- mice( NB.data, maxit = 0 )

R> pred3 <- ini$predictorMatrix

R> pred3[1,] <-c ( 0, 0, 2, 0, -2, 0, 1 )

R> meth3 <- ini$method

R> meth3[1] <- "2l.poisson.noint"

R> imp3 <- mice( NB.data, maxit = 1, method = meth3,

+ pred = pred3, seed = 1234)

R> result3 <- do.mira( imp = imp, DV = "Y",

+ fixedeff = "X1+Z1", randeff = "0+X1",

+ grp = "GRP", id = "ID", fam = "poisson")

R> summary(result3)

Pooled Fixed Effects Coefficients:

est std.err t.value df p.value

(Intercept) 1.1117 0.0333 33.3614 5.04 4.1e-07 ***

X1 0.7354 0.0404 18.1834 593.74 < 2e-16 ***

Z1 0.4453 0.0421 10.5788 4.63 2e-04 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

lower upper r fminf

(Intercept) 1.0262949 1.1971789 8.139917 0.91779551

X1 0.6559541 0.8148096 0.089418 0.08515512

Z1 0.3344417 0.5560868 13.111031 0.94770084

Pooled Random Effects SD(s):

X1 Residual

0.2670139 1.8223524

Pooled Random Effects Correlation(s):

[1] 0
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Note that a random slope model without the intercept is estimated by specifying randeff =

"0+..." when calling do.mira().

3.5 Multiple imputation of incomplete overdispersed two-level count data

The following functions were designed to impute incomplete overdispersed two-level count data:

mice.impute.2l.nb2(y, ry, x, type, intercept = TRUE)

mice.impute.2l.nb2.boot(y, ry, x, type, intercept = TRUE)

mice.impute.2l.nb2.noint(y, ry, x, type, intercept = FALSE)

mice.impute.2l.nb2B.noint.boot(y, ry, x, type, intercept = FALSE)

These functions multiply impute an incomplete count variable in long format (i.e. the groups or
measurement timepoints are stacked upon each other) based on a two-levle generalized linear mixed
effects model – a NB2 model in the terminology of Hilbe (2007). The functions either follow the
Bayesian Regression approach or the bootstrap approach (function name ending with “.boot”).
The “.noint” variants treat the intercept only as a fixed, but not as a random effect.

The functions use the same arguments as the functions presented in Section 3.4. The algo-
rithm also works quite similarly: To get an estimate of a , the dispersion parameter of the NB2
model, we use the glmmadmb() function of package glmmADMB. Note that glmmADMB is
not available from http://cran.r-project.org. The package can be obtained from http://

glmmadmb.r-forge.r-project.org. Information regarding the installation of that package can
also be obtained from that website. Unfortunately, it is not possible to get estimates of ran-
dom effects covariances with the current version of glmmadmb() (0.7.4). We deem this a major
shortcoming. Until this issue is addressed, we use glmmadmb() only to estimate dispersion. We
then fit the actual NB2 model using the glmmPQL() function from package MASS with family
negative.binomial(alpha). Note that MASS at the moment has no own capabilities to get an
estimate for a . The negative.binomial family in MASS requires an estimate of a as input –
thus the workaround.

The Bayesian regression algorithms thus consist of the following steps:

1. Fit the NB2 model, first using glmmadmb() to get an estimate for a , then using glmmPQL(),
as described above.

2. Find bhat, the posterior mean, and V(bhat), the posterior variance of model parameters b.

3. Draw b.star from N(bhat,V(bhat)).
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4. Compute predicted counts p.

5. Draw imputations from a Negative Binomial distribution with mean p and dispersion a .

The bootstrap variants draw a bootstrap sample from y[ry] and x[ry,] and consist of the
following steps:

1. Fit the NB2 model to the bootstrap sample, first using glmmadmb() to get an estimate for a ,
then using glmmPQL(), as described above.

2. Compute predicted counts p.

3. Draw imputations a from Negative Binomial distribution with mean p and dispersion a .

All functions return a numeric vector of length sum(!ry) with imputations.

3.5.1 Example

We now give an example regarding how to use these functions: We first load the data set NB.data,
which contains the incomplete overdispersed count variable Y (see Section 3.4 for details about that
data set).

We then set up the imputation:

R> ini <- mice( NB.data, maxit = 0 )

R> pred <- ini$predictorMatrix

R> pred[1,] <-c ( 0, 0, 2, 0, -2, 0, 1 )

R> meth <- ini$method

R> meth[1] <- "2l.nb2.boot"

Running mice() with maxit=0 sets up the method vector and predictorMatrix. We simple
have to change the entries to meet our needs. In this example, we use X1 as a fixed and random
effect, and Z1 as a fixed effect (group level predictor). The class variable is GRP. We then want to
impute missing data in Y using the mice.impute.2l.nb2.boot() function – the bootstrap variant.
The imputations are created by calling mice():

R> imp <- mice( NB.data, maxit = 1, method = meth, pred = pred,

+ print = FALSE, seed = 1234 )

We then do the automated repeated data analysis using the do.mira() function and obtain a sum-
mary of the results:
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R> result<-do.mira( imp = imp, DV = "Y",

+ fixedeff = "X1+Z1", randeff = "X1",

+ grp = "GRP", id = "ID", fam = "nbinom")

R> summary(result)

Pooled Fixed Effects Coefficients:

est std.err t.value df p.value

(Intercept) 1.0018 0.0694 14.4334 102630.0 < 2e-16 ***

X1 0.7771 0.0371 20.9533 4934.8 < 2e-16 ***

Z1 0.4523 0.0829 5.4578 30633.5 4.9e-08 ***

alpha 2.0634 0.0564 36.5589 26.4 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

lower upper r fminf

(Intercept) 0.8657269 1.1377963 0.006282212 0.006262357

X1 0.7044190 0.8498397 0.029304835 0.028864019

Z1 0.2898540 0.6147084 0.011559075 0.011491526

alpha 1.9474598 2.1793002 0.636567250 0.430477372

Pooled Random Effects SD(s):

(Intercept) X1 Residual

0.4645968 0.2490271 1.0000917

Pooled Random Effects Correlation(s):

(Intercept) X1

(Intercept) 1.0000 -0.3262

X1 -0.3262 1.0000

3.6 Multiple imputation of incomplete zero-inflated and overdispersed two-
level count data

The following functions were designed to impute incomplete zero-inflated (and overdispersed) two-
level count data:

mice.impute.2l.zihnb(y,ry,x,type,intercept.c=TRUE,intercept.z=TRUE)

mice.impute.2l.zihnb.noint.zero(y,ry,x,type,intercept.c=TRUE,intercept.z=FALSE)

mice.impute.2l.zihnb.noint.count(y,ry,x,type,intercept.c=FALSE,intercept.z=TRUE)
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mice.impute.2l.zihnb.noint.both(y,ry,x,type,intercept.c=FALSE,intercept.z=FALSE)

mice.impute.2l.zihnb.boot(y,ry,x,type,intercept.c=TRUE,intercept.z=TRUE)

mice.impute.2l.zihnb.noint.zero.boot(y,ry,x,type,intercept.c=TRUE,intercept.z=FALSE)

mice.impute.2l.zihnb.noint.count.boot(y,ry,x,type,intercept.c=FALSE,intercept.z=TRUE)

mice.impute.2l.zihnb.noint.both.boot(y,ry,x,type,intercept.c=FALSE,intercept.z=FALSE)

The functions impute zero-inflated (and overdispersed) multilevel count data based on a two-
level NB hurdle model, either using a Bayesian Regression (“.zihnb”) or a bootstrap approach
(“.boot”). The “.noint” variants treat the intercept only as a fixed, but not as a random effect.
It may be specified, if the intercept is excluded from the random effects only in the zero model
(“.noint.zero”), the count model (“.noint.count”), or both models (“.noint.both”). Note
again that hurdle models are mixture models and consist of two models: the zero model (here
a binomial GLMM), determining, if the observational unit has a zero or non-zero value, and the
count model (here a zero-truncated two-level NB model) determining, what kind of non-zero value
the observational unit has.

The following arguments are used by these functions:

y A numeric vector with incomplete data in long format (i.e. the groups are stacked upon each
other).

ry the response indicator of y.

x a matrix with length(y) rows containing complete covariates (also in long format).

type a vector of length(ncol(x)) determining the imputation model.

intercept.c TRUE: model will include intercept as a random effect in the count model; FALSE:
model will not use intercept as a random effect.

intercept.z TRUE: model will include intercept as a random effect in the zero model; FALSE:
model will not use intercept as a random effect.

y,ry,x and type are obtained from mice(). type is extracted from the respective row of the
predictorMatrix: Allowed entries are:

• -2 = class variable (only one class variable is allowed!).

• 0 = variable not included in imputation model.

• 1 = variable will be included as a fixed effect (zero and count model).
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• 2 = variable will be included as a fixed and random effect (zero and count model).

• 3 = variable will be included as a fixed effect (count model only).

• 4 = variable will be included as a fixed and random effect (count model only).

• 5 = variable will be included as a fixed effect (zero model only).

• 6 = variable will be included as a fixed and random effect (zero model only).

The Bayesian regression variants (see Rubin, 1987, pp. 169–170) consist of the following steps:

1. Fit the zero model (a two-level binomial generalized linear mixed effects model), using the
glmmPQL function from package MASS and find bhat, the posterior mean, and V(bhat), the
posterior variance of model parameters b.

2. Draw b.star from N(bhat,V(bhat)).

3. Compute predicted probabilities for having a zero vs. non-zero count, using b.star.

4. Draw imputations from a Binomial distribution and “remember” cases, who are supposed to
get a non-zero count later on.

5. Fit the count model (a zero-truncated 2L NB model) using the glmmadmb function from pack-
age glmmADMB and the truncnbinom family; find bhat, the posterior mean, and V(bhat),
the posterior variance of model parameters b.

6. Draw b.star from N(bhat,V(bhat)).

7. Compute predicted counts and draw non-zero imputations (from step 4) from a zero-truncated
NB distribution.

The bootstrap functions draw a bootstrap sample from y[ry] and x[ry,] and consist of the
following steps:

1. Fit the zero model to the bootstrap sample.

2. Compute predicted probabilities for having a zero vs. non-zero count.

3. Draw imputations from a Binomial distribution and “remember” cases, who are supposed to
get a non-zero count.

4. Fit the count model to the boostrap sample.
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5. Compute predicted counts and draw non-zero imputations (from step 3) from a zero-truncated
NB distribution.

All functions return a numeric vector of length sum(!ry) with imputations.

3.6.1 Example

Again, we give an example, which illustrates the use of these functions:

R> data( "MZINB.data.Rdata" )

R> ini <- mice( MZINB.data, maxit = 0 )

R> pred <- ini$predictorMatrix

R> pred[1,] <- c( 0, 0, 2, 0, -2, 0, 1 )

R> meth <- ini$method

R> meth[1] <- "2l.zihnb"

R> imp <- mice( MZINB.data, maxit = 1, method = meth,

+ predictorMatrix = pred, seed = 1234)

R> result <- do.mira( imp, DV = "Y", fixedeff = "X1+Z1", randeff = "X1",

+ fam = "truncnbinom", grp = "GRP", id = "ID" )

R> summary( result )

Pooled Fixed Effects Coefficients:

est std.err t.value df p.value

(Intercept).zero 0.0649 0.0755 0.8602 28.9 0.40

X1.zero 0.4429 0.0399 11.1048 2754.8 < 2e-16 ***

Z1.zero 0.1049 0.0733 1.4319 19.5 0.17

(Intercept).count 0.8663 0.0780 11.1049 429.2 < 2e-16 ***

X1.count 0.7959 0.0390 20.3958 77.7 < 2e-16 ***

Z1.count 0.4456 0.0717 6.2133 139.2 5.6e-09 ***

alpha.count 0.9083 0.0615 14.7678 36.5 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

lower upper r fminf

(Intercept).zero -0.08945051 0.2192930 0.59223598 0.41131303

X1.zero 0.36465704 0.5210512 0.03961445 0.03880251

Z1.zero -0.04817742 0.2580075 0.82803987 0.50160149

(Intercept).count 0.71297064 1.0196306 0.10685837 0.10072310
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X1.count 0.71816528 0.8735436 0.29354952 0.24609907

Z1.count 0.30378615 0.5873607 0.20415673 0.18122715

alpha.count 0.78362897 1.0329870 0.49473412 0.36484799

Pooled Random Effects SD(s):

(Intercept).zero X1.zero Residual.zero (Intercept).count

0.3897336 0.2342796 0.9952241 0.4812296

X1.count

0.1961808

Pooled Random Effects Correlation(s):

(Intercept).zero X1.zero

(Intercept).zero 1.000 0.027

X1.zero 0.027 1.000

Please note again, that the current version of glmmadmb() cannot yet estimate correlations between
random effects (see Section 3.5). This issue is currently being adressed by the glmmADMB de-
velopers and will hopefully be available in the near future. We will update the countimp package
accordingly. Until then, do.mira() reads out pooled random effects correlations only for the zero
model.

4 Discussion

We present multiple imputation procedures for various types of incompletely observed count data
that work as an add-on for the Multiple Imputation by Chained Equations package mice in R (van
Buuren & Groothuis-Oudshoorn, 2011). Currently, our algorithms cover ordinary, overdispersed,
zero-inflated and multilevel count data. The advantage of integrating our algorithms into mice is
that mice offers great imputation functionalities and diagnostic checks to ascertain convergence of
the imputation Gibbs sampler and to asses plausibility of the created imputations. Our routines are
thus embedded in a very popular, flexible and powerful imputation package. Practitioners already
familiar with mice do not have to learn yet another statistical tool.

Our software is available free of charge from http://www.uni-bielefeld.de/soz/kds/.
An overview of current software developments, evaluations of our imputation procedures, empirical
examples, and applications may also be found there.

By and large, our algorithms are expected to yield good results, if statistical assumptions are
more or less met, mainly that the MAR assumption holds and that the assumed statistical models fit
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the data reasonably well, and their assumptions are met. The greater the model misspecifications
are, the more bias is to be expected. Secondly, effects of model misspecifications of course will
get worse, the more missing data there are in the data set. If there is only a moderate percentage of
missing data and model fit is good, then imputations should be plausible and valid.

Limitations and future research Currently, our multilevel procedures allow only two hierarchi-
cal levels. They furthermore assume homoscedasticity. An interesting avenue for future software
development will be to allow for greater modeling flexibility, especially regarding autocorrelation
in error terms or heteroscedasticity. At the moment, a limitation is that some functions rely on the
glmmADMB package, which does not allow the estimation of random effects correlations. The
current version has an argument corStruct that can be set to full, which means that a positive
definite matrix with all elements is being estimated, however, that feature is not yet working! We
hope that will be remedied with the next update. A further limitation is that glmmadmb() appears to
be quite slow in comparison to other multilevel modeling tools in R. An avenue for future program
development might be to speed things up a little.
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Kleinke, K., Stemmler, M., Reinecke, J., & Lösel, F. (2011). Efficient ways to impute incomplete
panel data. Advances in Statistical Analysis, 95(4), 351–373.

Lambert, D. (1992). Zero-inflated poisson regression. With an application to defects in manufac-
turing. Technometrics, 34, 1–14.

Landerman, L., Land, K., & Pieper, C. (1997). An empirical evaluation of the predictive mean
matching method for imputing missing values. Sociological methods & research, 26(1), 3–33.

Mullahy, J. (1986). Specification and testing of some modified count data models. Journal of
Econometrics, 33, 341–365.

Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal
Statistical Society A, 135, 370–384.

32

http://www2.sas.com/proceedings/forum2008/322-2008.pdf


Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., & Solenberger, P. (2001). A multivariate
technique for multiply imputing missing values using a sequence of regression models. Survey
Methodology, 27(1), 85–96.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological
Methods, 7, 147–177.

Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-
effects models with missing values. Journal of Computational and Graphical Statistics, 11(2),
437–457.

Schall, R. (1991). Estimation in generalized linear models with random effects. Biometrika, 78(4),
719–727.

Su, Y.-S., Gelman, A., Hill, J., & Yajima, M. (2009). Multiple imputation with diagnostics (mi) in
R: Opening windows into the black box. Journal of Statistical Software, 20(1), 1–27.

van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully
conditional specification in multivariate imputation. Journal of Statistical Computation and Sim-
ulation, 76(12), 1049–1064.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained
equations in R. Journal of Statistical Software, 45(3), 1–67.

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. New York: Springer.

Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of
Statistical Software, 27(8), 1–25.

33

View publication statsView publication stats

https://www.researchgate.net/publication/281236990

	Introduction and overview
	Theoretical background
	Multiple imputation in a nutshell
	The mice package in R
	Count data modeling in a nutshell
	Introducing between-imputation variability

	Multiple imputation of incomplete count data
	Multiple imputation of ``ordinary'' count data
	Example

	Multiple imputation of overdispersed count data
	Example

	Multiple imputation of zero-inflated count data
	Example

	Multiple imputation of incomplete ``ordinary'' two-level count data
	Example 1
	Example 2
	Example 3

	Multiple imputation of incomplete overdispersed two-level count data
	Example

	Multiple imputation of incomplete zero-inflated and overdispersed two-level count data
	Example


	Discussion

